Multivariate moment problems : geometry and indeterminateness
Multivariate moment problems : geometry and indeterminateness
No Thumbnail Available
Files
There are no files associated with this item.
Date
2006
Authors
Putinar, Mihai
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Annali della Scuola Normale Superiore di Pisa – Classe di Scienze ; 5 (2006), 2. - pp. 137-157. - ISSN 0391-173X. - eISSN 2036-2145
Abstract
The most accurate determinateness criteria for the multivariate moment problem require the density of polynomials in a weighted Lebesgue space of a generic representing measure. We propose a relaxation of such a criterion to the approximation of a single function, and based on this condition we analyze the impact of the geometry of the support on the uniqueness of the representing measure. In particular we show that a multivariate moment sequence is determinate if its support has dimension one and is virtually compact; a generalization to higher dimensions is also given. Among the one-dimensional sets which are not virtually compact, we show that at least a large subclass supports indeterminate moment sequences. Moreover, we prove that the determinateness of a moment sequence is implied by the same condition (in general easier to verify) of the push-forward sequence via finite morphisms.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
PUTINAR, Mihai, Claus SCHEIDERER, 2006. Multivariate moment problems : geometry and indeterminateness. In: Annali della Scuola Normale Superiore di Pisa – Classe di Scienze. 5(2), pp. 137-157. ISSN 0391-173X. eISSN 2036-2145. Available under: doi: 10.2422/2036-2145.2006.2.01BibTex
@article{Putinar2006Multi-23296, year={2006}, doi={10.2422/2036-2145.2006.2.01}, title={Multivariate moment problems : geometry and indeterminateness}, number={2}, volume={5}, issn={0391-173X}, journal={Annali della Scuola Normale Superiore di Pisa – Classe di Scienze}, pages={137--157}, author={Putinar, Mihai and Scheiderer, Claus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23296"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:issued>2006</dcterms:issued> <dcterms:title>Multivariate moment problems : geometry and indeterminateness</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Putinar, Mihai</dc:creator> <dcterms:abstract xml:lang="eng">The most accurate determinateness criteria for the multivariate moment problem require the density of polynomials in a weighted Lebesgue space of a generic representing measure. We propose a relaxation of such a criterion to the approximation of a single function, and based on this condition we analyze the impact of the geometry of the support on the uniqueness of the representing measure. In particular we show that a multivariate moment sequence is determinate if its support has dimension one and is virtually compact; a generalization to higher dimensions is also given. Among the one-dimensional sets which are not virtually compact, we show that at least a large subclass supports indeterminate moment sequences. Moreover, we prove that the determinateness of a moment sequence is implied by the same condition (in general easier to verify) of the push-forward sequence via finite morphisms.</dcterms:abstract> <dc:contributor>Putinar, Mihai</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-16T09:27:49Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-16T09:27:49Z</dc:date> <dcterms:bibliographicCitation>Annali della Scuola Normale Superiore di Pisa – Classe di Scienze ; 5 (2006), 2. - S. 137-157</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23296"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes