Publikation:

Model-based clustering and typologies in the social sciences

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Ahlquist, John S.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Political Analysis. 2011, 20(1), pp. 92-112. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1093/pan/mpr039

Zusammenfassung

Social scientists spend considerable energy constructing typologies and discussing their roles in measurement. Less discussed is the role of typologies in evaluating and revising theoretical arguments. We argue that unsupervised machine learning tools can be profitably applied to the development and testing of theory-based typologies. We review recent advances in mixture models as applied to cluster analysis and argue that these tools are particularly important in the social sciences where it is common to claim that high-dimensional objects group together in meaningful clusters. Model-based clustering (MBC) grounds analysis in probability theory, permitting the evaluation of uncertainty and application of information-based model selection tools. We show that the MBC approach forces analysts to consider dimensionality problems that more traditional clustering tools obscure. We apply MBC to the "varieties of capitalism", a typology receiving significant attention in political science and economic sociology. We find weak and conflicting evidence for the theory's expected grouping. We therefore caution against the current practice of including typology-derived dummy variables in regression and case-comparison research designs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AHLQUIST, John S., Christian BREUNIG, 2011. Model-based clustering and typologies in the social sciences. In: Political Analysis. 2011, 20(1), pp. 92-112. ISSN 1047-1987. eISSN 1476-4989. Available under: doi: 10.1093/pan/mpr039
BibTex
@article{Ahlquist2011Model-22655,
  year={2011},
  doi={10.1093/pan/mpr039},
  title={Model-based clustering and typologies in the social sciences},
  number={1},
  volume={20},
  issn={1047-1987},
  journal={Political Analysis},
  pages={92--112},
  author={Ahlquist, John S. and Breunig, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22655">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22655"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Ahlquist, John S.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Social scientists spend considerable energy constructing typologies and discussing their roles in measurement. Less discussed is the role of typologies in evaluating and revising theoretical arguments. We argue that unsupervised machine learning tools can be profitably applied to the development and testing of theory-based typologies. We review recent advances in mixture models as applied to cluster analysis and argue that these tools are particularly important in the social sciences where it is common to claim that high-dimensional objects group together in meaningful clusters. Model-based clustering (MBC) grounds analysis in probability theory, permitting the evaluation of uncertainty and application of information-based model selection tools. We show that the MBC approach forces analysts to consider dimensionality problems that more traditional clustering tools obscure. We apply MBC to the "varieties of capitalism", a typology receiving significant attention in political science and economic sociology. We find weak and conflicting evidence for the theory's expected grouping. We therefore caution against the current practice of including typology-derived dummy variables in regression and case-comparison research designs.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2011</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-03T11:58:48Z</dc:date>
    <dc:contributor>Breunig, Christian</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Breunig, Christian</dc:creator>
    <dc:creator>Ahlquist, John S.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-03T11:58:48Z</dcterms:available>
    <dcterms:bibliographicCitation>Political Analysis ; 20 (2012), 1. - S. 92-112</dcterms:bibliographicCitation>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:title>Model-based clustering and typologies in the social sciences</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen