Publikation:

H∞-Calculus for cylindrical boundary value problems

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Saal, Juergen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Differential Equations. Khayyam Publishing. 2012, 17(7/8), pp. 767-800. ISSN 1079-9389

Zusammenfassung

In this note an R-bounded H∞-calculus for linear operators associated to cylindrical boundary value problems is proved. The obtained results are based on an abstract result on operator-valued functional calculus by N. Kalton and L. Weis; cf. [28]. Cylindrical in this context means that both domain and differential operator possess a certain cylindrical structure. In comparison to standard methods (e.g. localization procedures), our approach appears less technical and provides short proofs. Besides, we are even able to deal with some classes of equations on rough domains. For instance, we can extend the well-known (and in general sharp) range for p such that the (weak) Dirichlet Laplacian admits an H∞-calculus on Lp(Ω), from (3+ε)′<p<3+ε to (4+ε)′<p<4+ε for three-dimensional bounded or unbounded Lipschitz cylinders Ω. Our approach even admits mixed Dirichlet Neumann boundary conditions in this situation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690NAU, Tobias, Juergen SAAL, 2012. H∞-Calculus for cylindrical boundary value problems. In: Advances in Differential Equations. Khayyam Publishing. 2012, 17(7/8), pp. 767-800. ISSN 1079-9389
BibTex
@article{Nau2012HCalc-49220,
  year={2012},
  title={H∞-Calculus for cylindrical boundary value problems},
  url={https://projecteuclid.org/euclid.ade/1355702976},
  number={7/8},
  volume={17},
  issn={1079-9389},
  journal={Advances in Differential Equations},
  pages={767--800},
  author={Nau, Tobias and Saal, Juergen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49220">
    <dcterms:abstract xml:lang="eng">In this note an R-bounded H∞-calculus for linear operators associated to cylindrical boundary value problems is proved. The obtained results are based on an abstract result on operator-valued functional calculus by N. Kalton and L. Weis; cf. [28]. Cylindrical in this context means that both domain and differential operator possess a certain cylindrical structure. In comparison to standard methods (e.g. localization procedures), our approach appears less technical and provides short proofs. Besides, we are even able to deal with some classes of equations on rough domains. For instance, we can extend the well-known (and in general sharp) range for p such that the (weak) Dirichlet Laplacian admits an H∞-calculus on Lp(Ω), from (3+ε)′&lt;p&lt;3+ε to (4+ε)′&lt;p&lt;4+ε for three-dimensional bounded or unbounded Lipschitz cylinders Ω. Our approach even admits mixed Dirichlet Neumann boundary conditions in this situation.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Nau, Tobias</dc:creator>
    <dc:creator>Saal, Juergen</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-15T10:05:21Z</dc:date>
    <dc:contributor>Saal, Juergen</dc:contributor>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:title>H∞-Calculus for cylindrical boundary value problems</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-15T10:05:21Z</dcterms:available>
    <dc:contributor>Nau, Tobias</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49220"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2020-04-15

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Unbekannt
Diese Publikation teilen