Multiversism and Concepts of Set : How Much Relativism Is Acceptable?
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Multiverse Views in set theory advocate the claim that there are many universes of sets, no-one of which is canonical, and have risen to prominence over the last few years. One motivating factor is that such positions are often argued to account very elegantly for technical practice. While there is much discussion of the technical aspects of these views, in this paper I analyse a radical form of Multiversism on largely philosophical grounds. Of particular importance will be an account of reference on the Multiversist conception, and the relativism that it implies. I argue that analysis of this central issue in the Philosophy of Mathematics indicates that Radical Multiversism must be algebraic, and cannot be viewed as an attempt to provide an account of reference without a softening of the position.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTON, Neil, 2016. Multiversism and Concepts of Set : How Much Relativism Is Acceptable?. In: BOCCUNI, Francesca, ed., Andrea SERENI, ed.. Objectivity, Realism, and Proof : FilMat Studies in the Philosophy of Mathematics. Cham: Springer, 2016, pp. 189-209. Boston Studies in the Philosophy and History of Science. 318. ISBN 978-3-319-31642-0. Available under: doi: 10.1007/978-3-319-31644-4_11BibTex
@incollection{Barton2016Multi-52679, year={2016}, doi={10.1007/978-3-319-31644-4_11}, title={Multiversism and Concepts of Set : How Much Relativism Is Acceptable?}, number={318}, isbn={978-3-319-31642-0}, publisher={Springer}, address={Cham}, series={Boston Studies in the Philosophy and History of Science}, booktitle={Objectivity, Realism, and Proof : FilMat Studies in the Philosophy of Mathematics}, pages={189--209}, editor={Boccuni, Francesca and Sereni, Andrea}, author={Barton, Neil} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52679"> <dc:creator>Barton, Neil</dc:creator> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Multiversism and Concepts of Set : How Much Relativism Is Acceptable?</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-02T14:23:41Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52679"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:issued>2016</dcterms:issued> <dcterms:abstract xml:lang="eng">Multiverse Views in set theory advocate the claim that there are many universes of sets, no-one of which is canonical, and have risen to prominence over the last few years. One motivating factor is that such positions are often argued to account very elegantly for technical practice. While there is much discussion of the technical aspects of these views, in this paper I analyse a radical form of Multiversism on largely philosophical grounds. Of particular importance will be an account of reference on the Multiversist conception, and the relativism that it implies. I argue that analysis of this central issue in the Philosophy of Mathematics indicates that Radical Multiversism must be algebraic, and cannot be viewed as an attempt to provide an account of reference without a softening of the position.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-02T14:23:41Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:contributor>Barton, Neil</dc:contributor> </rdf:Description> </rdf:RDF>