Quantum state reconstruction of classical and nonclassical light and a cryogenic opto-mechanical sensor for high-precision interferometry

Loading...
Thumbnail Image
Date
1998
Authors
Breitenbach, Gerd
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Dissertation
Publication status
Published in
Abstract
Central topic of this thesis is the investigation of the quantum nature of light. This investigation is carried out in two separate experiments which are described in part I and part II respectively.
In part I, classical and non-classical laser radiation is characterized at the quantum mechanical level with respect to its amplitude and phase uctuations, its photon number distribution and other observable quantities. This is done by employing recently developed methods of quantum state reconstruction. Such a complete characterization is of fundamental interest, since it can provide a much more detailed experimental description of light than previously known. Furthermore, since many experimental systems are analyzed by optical means, these methods may in future and important applications in the characterization of such systems in full quantum mechanical detail, by determining the state of the light held used as a probe before and after the interaction with the system.
In part II, high precision position measurements via laser interferometry are investigated. Such measurements play an important role in the microscopic domain (optomechanical sensors, modern microscopy techniques) as well as in the macroscopic domain (development of large scale interferometers for the detection of gravitational waves). The goal of the second experiment is to explore the quantum mechanical limits in the precision with which the position of a macroscopic body can be determined.
One common conceptual aspect of both experiments, besides the similar optical techniques employed, is that both attempt a high precision characterization of a harmonic oscillator system disturbed by stochastic noise. In part I, this oscillator is the light held, subject to quantum noise, in part II, it is a mechanical harmonic oscillator excited by thermal noise.
Summary in another language
Das zentrale Thema der vorliegenden Arbeit ist die Untersuchung der Quantennatur des Lichtes. Diese Untersuchung wurde in zwei separaten Experimenten durchgeführt, welche in Teil I und Teil II beschrieben werden.
In Teil I wird klassische und nichtklassische Laserstrahlung auf quantenmechanischer Ebene charakterisiert, im Hinblick auf seine Amplituden- und Phasenfluktuationen, seine Photonenzahlverteilung und andere observable Größen. Dies geschieht mit Hilfe von jüngst entwickelten Methoden der Quantenzustandsrekonstruktion. Solch eine vollständige Charakterisierung ist zum einen von fundamentalem Interesse, da sie eine bei weitem detailliertere experimentelle Beschreibung von Licht ermöglicht, als bisher bekannt war. Zum anderen werden viele experimentelle Systeme mit Hilfe optischer Verfahren analysiert, wodurch diese Methoden der Quantenzustandsrekonstruktion zukünftig eine wichtige Anwendung im Rahmen der Charakterisierung solcher Systeme finden können, indem der Zustand des sondierenden Lichtfeldes vor und nach der Wechselwirkung mit dem System bestimmt wird.
In Teil II werden laserinterferometrische Präzisionsmessungen des Ortes untersucht. Solche Messungen spielen sowohl im mikroskopischen (optomechanische Sensoren, moderne Techniken der Mikroskopie), als auch im makrosopischen Bereich (Entwicklung von Gravitationswellendetektoren) eine wichtige Rolle. Das Ziel dieses zweiten Experimentes ist es, die quantenmechanische Grenze der Präzision zu erforschen, mit welcher der Ort eines makroskopischen Gegenstandes bestimmbar ist.
Ein gemeinsamer Aspekt beider Experimente, neben den jeweils verwendeten ähnlichen optischen Techniken, ist der, daß beide hochpräzise Charakterisierungen eines von stochastischem Rauschen gestörten harmonischen Oszillatorsystems vornehmen. In Teil I ist dieser Oszillator das Lichtfeld selbst, welches dem Quantenrauschen ausgesetzt ist, in Teil II ist es ein mechanischer Oszillator, angeregt durch thermisches Rauschen.
Subject (DDC)
530 Physics
Keywords
high-precision interferometry
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BREITENBACH, Gerd, 1998. Quantum state reconstruction of classical and nonclassical light and a cryogenic opto-mechanical sensor for high-precision interferometry [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Breitenbach1998Quant-4946,
  year={1998},
  title={Quantum state reconstruction of classical and nonclassical light and a cryogenic opto-mechanical sensor for high-precision interferometry},
  author={Breitenbach, Gerd},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/4946">
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:abstract xml:lang="eng">Central topic of this thesis is the investigation of the quantum nature of light. This investigation is carried out in two separate experiments which are described in part I and part II respectively.&lt;br /&gt;In part I, classical and non-classical laser radiation is characterized at the quantum mechanical level with respect to its amplitude and phase uctuations, its photon number distribution and other observable quantities. This is done by employing recently developed methods of quantum state reconstruction. Such a complete characterization is of fundamental interest, since it can provide a much more detailed experimental description of light than previously known. Furthermore, since many experimental systems are analyzed by optical means, these methods may in future and important applications in the characterization of such systems in full quantum mechanical detail, by determining the state of the light held used as a probe before and after the interaction with the system.&lt;br /&gt;In part II, high precision position measurements via laser interferometry are investigated. Such measurements play an important role in the microscopic domain (optomechanical sensors, modern microscopy techniques) as well as in the macroscopic domain (development of large scale interferometers for the detection of gravitational waves). The goal of the second experiment is to explore the quantum mechanical limits in the precision with which the position of a macroscopic body can be determined.&lt;br /&gt;One common conceptual aspect of both experiments, besides the similar optical techniques employed, is that both attempt a high precision characterization of a harmonic oscillator system disturbed by stochastic noise. In part I, this oscillator is the light held, subject to quantum noise, in part II, it is a mechanical harmonic oscillator excited by thermal noise.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Breitenbach, Gerd</dc:creator>
    <dcterms:issued>1998</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:51:35Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4946/1/227_1.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/4946"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:51:35Z</dc:date>
    <dc:contributor>Breitenbach, Gerd</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4946/1/227_1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Quantum state reconstruction of classical and nonclassical light and a cryogenic opto-mechanical sensor for high-precision interferometry</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
July 16, 1998
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed