AIR-Nets : An Attention-Based Framework for Locally Conditioned Implicit Representations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper introduces Attentive Implicit Representation Networks (AIR-Nets), a simple, but highly effective architecture for 3D reconstruction from point clouds. Since representing 3D shapes in a local and modular fashion increases generalization and reconstruction quality, AIR-Nets encode an input point cloud into a set of local latent vectors anchored in 3D space, which locally describe the object’s geometry, as well as a global latent description, enforcing global consistency. Our model is the first grid-free, encoder-based approach that locally describes an implicit function. The vector attention mechanism from [62] serves as main point cloud processing module, and allows for permutation invariance and translation equivariance. When queried with a 3D coordinate, our decoder gathers information from the global and nearby local latent vectors in order to predict an occupancy value. Experiments on the ShapeNet dataset [7] show that AIR-Nets significantly outperform previous state-of-the-art encoder-based, implicit shape learning methods and especially dominate in the sparse setting. Furthermore, our model generalizes well to the FAUST dataset [1] in a zero-shot setting. Finally, since AIR-Nets use a sparse latent representation and follow a simple operating scheme, the model offers several exiting avenues for future work. Our code is available at https: //github.com/SimonGiebenhain/AIR-Nets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GIEBENHAIN, Simon, Bastian GOLDLÜCKE, 2021. AIR-Nets : An Attention-Based Framework for Locally Conditioned Implicit Representations. International Conference on 3D Vision : 3DV 2021. Online, 1. Dez. 2021 - 3. Dez. 2021. In: 2021 International Conference on 3D Vision, 3DV 2021 : , virtual conference ; 1-3 December 2021 : proceedings. Piscataway: IEEE, 2021, pp. 1054-1064. ISBN 978-1-66542-688-6. Available under: doi: 10.1109/3DV53792.2021.00113BibTex
@inproceedings{Giebenhain2021AIRNe-57559, year={2021}, doi={10.1109/3DV53792.2021.00113}, title={AIR-Nets : An Attention-Based Framework for Locally Conditioned Implicit Representations}, isbn={978-1-66542-688-6}, publisher={IEEE}, address={Piscataway}, booktitle={2021 International Conference on 3D Vision, 3DV 2021 : , virtual conference ; 1-3 December 2021 : proceedings}, pages={1054--1064}, author={Giebenhain, Simon and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57559"> <dc:contributor>Giebenhain, Simon</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2021</dcterms:issued> <dc:language>eng</dc:language> <dcterms:title>AIR-Nets : An Attention-Based Framework for Locally Conditioned Implicit Representations</dcterms:title> <dcterms:abstract xml:lang="eng">This paper introduces Attentive Implicit Representation Networks (AIR-Nets), a simple, but highly effective architecture for 3D reconstruction from point clouds. Since representing 3D shapes in a local and modular fashion increases generalization and reconstruction quality, AIR-Nets encode an input point cloud into a set of local latent vectors anchored in 3D space, which locally describe the object’s geometry, as well as a global latent description, enforcing global consistency. Our model is the first grid-free, encoder-based approach that locally describes an implicit function. The vector attention mechanism from [62] serves as main point cloud processing module, and allows for permutation invariance and translation equivariance. When queried with a 3D coordinate, our decoder gathers information from the global and nearby local latent vectors in order to predict an occupancy value. Experiments on the ShapeNet dataset [7] show that AIR-Nets significantly outperform previous state-of-the-art encoder-based, implicit shape learning methods and especially dominate in the sparse setting. Furthermore, our model generalizes well to the FAUST dataset [1] in a zero-shot setting. Finally, since AIR-Nets use a sparse latent representation and follow a simple operating scheme, the model offers several exiting avenues for future work. Our code is available at https: //github.com/SimonGiebenhain/AIR-Nets.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:contributor>Goldlücke, Bastian</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57559"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-17T10:51:33Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-17T10:51:33Z</dcterms:available> <dc:creator>Giebenhain, Simon</dc:creator> </rdf:Description> </rdf:RDF>