Identifiability for mixtures of centered Gaussians and sums of powers of quadratics

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2023
Autor:innen
Casarotti, Alex
Oneto, Alessandro
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 467575307
Deutsche Forschungsgemeinschaft (DFG): 467575307
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Bulletin of the London Mathematical Society. Wiley. 2023, 55(5), pp. 2407-2424. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms.12871
Zusammenfassung

Abstract We consider the inverse problem for the polynomial map that sends an ‐tuple of quadratic forms in variables to the sum of their th powers. This map captures the moment problem for mixtures of centered ‐variate Gaussians . In the first nontrivial case , we show that for any , this map is generically one‐to‐one (up to permutations of and third roots of unity) in two ranges: for and for , thus proving generic identifiability for mixtures of centered Gaussians from their (exact) moments of degree at most . The first result is obtained by the explicit geometry of the tangential contact locus of the variety of sums of cubes of quadratic forms, as described by Chiantini and Ottaviani [SIAM J. Matrix Anal. Appl. 33 (2012), no. 3, 1018–1037], while the second result is accomplished using the link between secant nondefectivity with identifiability, proved by Casarotti and Mella [J. Eur. Math. Soc. (JEMS) (2022)]. The latter approach also generalizes to sums of th powers of ‐forms for and .

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
General Mathematics
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690TAVEIRA BLOMENHOFER, Alexander, Alex CASAROTTI, Mateusz MICHALEK, Alessandro ONETO, 2023. Identifiability for mixtures of centered Gaussians and sums of powers of quadratics. In: Bulletin of the London Mathematical Society. Wiley. 2023, 55(5), pp. 2407-2424. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms.12871
BibTex
@article{TaveiraBlomenhofer2023-06-06Ident-67250,
  year={2023},
  doi={10.1112/blms.12871},
  title={Identifiability for mixtures of centered Gaussians and sums of powers of quadratics},
  number={5},
  volume={55},
  issn={0024-6093},
  journal={Bulletin of the London Mathematical Society},
  pages={2407--2424},
  author={Taveira Blomenhofer, Alexander and Casarotti, Alex and Michalek, Mateusz and Oneto, Alessandro}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67250">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-28T08:50:17Z</dc:date>
    <dc:contributor>Casarotti, Alex</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:creator>Casarotti, Alex</dc:creator>
    <dc:contributor>Oneto, Alessandro</dc:contributor>
    <dcterms:abstract>Abstract We consider the inverse problem for the polynomial map that sends an ‐tuple of quadratic forms in variables to the sum of their th powers. This map captures the moment problem for mixtures of  centered  ‐variate Gaussians . In the first nontrivial case , we show that for any , this map is generically one‐to‐one (up to permutations of and third roots of unity) in two ranges: for and for , thus proving generic identifiability for mixtures of centered Gaussians from their (exact) moments of degree at most . The first result is obtained by the explicit geometry of the tangential contact locus of the variety of sums of cubes of quadratic forms, as described by Chiantini and Ottaviani [SIAM J. Matrix Anal. Appl. 33 (2012), no. 3, 1018–1037], while the second result is accomplished using the link between secant nondefectivity with identifiability, proved by Casarotti and Mella [J. Eur. Math. Soc. (JEMS) (2022)]. The latter approach also generalizes to sums of th powers of ‐forms for and .</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-28T08:50:17Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67250"/>
    <dc:contributor>Taveira Blomenhofer, Alexander</dc:contributor>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67250/1/Taveira-Blomenhofer_2-gqaw2xlwkfnk2.pdf"/>
    <dc:creator>Oneto, Alessandro</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67250/1/Taveira-Blomenhofer_2-gqaw2xlwkfnk2.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Taveira Blomenhofer, Alexander</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:title>Identifiability for mixtures of centered Gaussians and sums of powers of quadratics</dcterms:title>
    <dcterms:issued>2023-06-06</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen