The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potential
The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potential
Lade...
Dateien
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
Konstanzer Schriften in Mathematik; 329
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate the viscous model of quantum hydrodynamics, which describes the charge transport in a certain semiconductor. Quantum mechanical effects lead to third order derivatives, turning the stationary system into an elliptic system of mixed order in the sense of Douglis-Nirenberg. In the case most relevant to applications, the semiconductor device features a piecewise constant barrier potential. In the case of thermodynamic
equilibrium, we obtain asymptotic expansions of interfacial layers of the particle density in neighbourhoods of the jump points of this barrier potential, and we present rigorous proofs of uniform estimates of the remainder terms in these asymptotic expansions.
equilibrium, we obtain asymptotic expansions of interfacial layers of the particle density in neighbourhoods of the jump points of this barrier potential, and we present rigorous proofs of uniform estimates of the remainder terms in these asymptotic expansions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
partial differential equations
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
DREHER, Michael, Johannes SCHNUR, 2014. The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potentialBibTex
@techreport{Dreher2014combi-27502, year={2014}, series={Konstanzer Schriften in Mathematik}, title={The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potential}, number={329}, author={Dreher, Michael and Schnur, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27502"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27502"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27502/1/Dreher_275021.pdf"/> <dc:creator>Dreher, Michael</dc:creator> <dcterms:abstract xml:lang="eng">We investigate the viscous model of quantum hydrodynamics, which describes the charge transport in a certain semiconductor. Quantum mechanical effects lead to third order derivatives, turning the stationary system into an elliptic system of mixed order in the sense of Douglis-Nirenberg. In the case most relevant to applications, the semiconductor device features a piecewise constant barrier potential. In the case of thermodynamic<br />equilibrium, we obtain asymptotic expansions of interfacial layers of the particle density in neighbourhoods of the jump points of this barrier potential, and we present rigorous proofs of uniform estimates of the remainder terms in these asymptotic expansions.</dcterms:abstract> <dc:contributor>Dreher, Michael</dc:contributor> <dcterms:title>The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potential</dcterms:title> <dc:contributor>Schnur, Johannes</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-09T09:55:01Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27502/1/Dreher_275021.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-09T09:55:01Z</dc:date> <dcterms:issued>2014</dcterms:issued> <dc:creator>Schnur, Johannes</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja