Models of Two-Phase Fluid Dynamics à la Allen-Cahn, Cahn-Hilliard, and ... Korteweg!

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Confluentes Mathematici. Institut Camille Jordan. 2015, 7(2), pp. 57-67. ISSN 1793-7442. eISSN 1793-7434. Available under: doi: 10.5802/cml.24
Zusammenfassung

One purpose of this paper on the Navier-Stokes-Allen-Cahn (NSAC), the Navier-Stokes-Cahn-Hilliard (NSCH), and the Navier-Stokes-Korteweg (NSK) equations consists in surveying solution theories that one of the authors, M. K., has developed for these three evolutionary systems of partial differential equations. All three theories start from a Helmholtz free energy description of the compressible two-phase fluids whose dynamics they describe in various ways. While a diphasic fluid composed from two constituents of individually constant density is still compressible as long as these two densities are different from each other, the abovementioned solution theories for NSAC and NSCH do not apply in this “quasi-incompressible” case, as the Helmholtz-energy framework degenerates. The second purpose of the paper is to present an observation made by both authors together that shows how to fill these gaps. As ‘by-products’ one obtains (a) in the case that the phases can transform into each other, a justification of NSK, and (b) in the case that they cannot, a new Korteweg type system with non-local ‘viscosity’.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690FREISTÜHLER, Heinrich, Matthias KOTSCHOTE, 2015. Models of Two-Phase Fluid Dynamics à la Allen-Cahn, Cahn-Hilliard, and ... Korteweg!. In: Confluentes Mathematici. Institut Camille Jordan. 2015, 7(2), pp. 57-67. ISSN 1793-7442. eISSN 1793-7434. Available under: doi: 10.5802/cml.24
BibTex
@article{Freistuhler2015Model-55569,
  year={2015},
  doi={10.5802/cml.24},
  title={Models of Two-Phase Fluid Dynamics à la Allen-Cahn, Cahn-Hilliard, and ... Korteweg!},
  number={2},
  volume={7},
  issn={1793-7442},
  journal={Confluentes Mathematici},
  pages={57--67},
  author={Freistühler, Heinrich and Kotschote, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55569">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kotschote, Matthias</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-16T14:10:20Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>Models of Two-Phase Fluid Dynamics à la Allen-Cahn, Cahn-Hilliard, and ... Korteweg!</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">One purpose of this paper on the Navier-Stokes-Allen-Cahn (NSAC), the Navier-Stokes-Cahn-Hilliard (NSCH), and the Navier-Stokes-Korteweg (NSK) equations consists in surveying solution theories that one of the authors, M. K., has developed for these three evolutionary systems of partial differential equations. All three theories start from a Helmholtz free energy description of the compressible two-phase fluids whose dynamics they describe in various ways. While a diphasic fluid composed from two constituents of individually constant density is still compressible as long as these two densities are different from each other, the abovementioned solution theories for NSAC and NSCH do not apply in this “quasi-incompressible” case, as the Helmholtz-energy framework degenerates. The second purpose of the paper is to present an observation made by both authors together that shows how to fill these gaps. As ‘by-products’ one obtains (a) in the case that the phases can transform into each other, a justification of NSK, and (b) in the case that they cannot, a new Korteweg type system with non-local ‘viscosity’.</dcterms:abstract>
    <dc:contributor>Freistühler, Heinrich</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2015</dcterms:issued>
    <dc:creator>Freistühler, Heinrich</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-16T14:10:20Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55569"/>
    <dc:creator>Kotschote, Matthias</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen