Publikation:

Bring It to the Pitch : Combining Video and Movement Data to Enhance Team Sport Analysis

Lade...
Vorschaubild

Dateien

Stein_2-hr3l95xf6fze7.pdf
Stein_2-hr3l95xf6fze7.pdfGröße: 416.98 KBDownloads: 488

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 336978

Projekt

LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE transactions on visualization and computer graphics. 2018, 24(1), pp. 13-22. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2745181

Zusammenfassung

Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STEIN, Manuel, Halldor JANETZKO, Andreas LAMPRECHT, Thorsten BREITKREUTZ, Philip ZIMMERMANN, Bastian GOLDLÜCKE, Tobias SCHRECK, Gennady ANDRIENKO, Michael GROSSNIKLAUS, Daniel A. KEIM, 2018. Bring It to the Pitch : Combining Video and Movement Data to Enhance Team Sport Analysis. In: IEEE transactions on visualization and computer graphics. 2018, 24(1), pp. 13-22. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2745181
BibTex
@article{Stein2018-01Bring-41137,
  year={2018},
  doi={10.1109/TVCG.2017.2745181},
  title={Bring It to the Pitch : Combining Video and Movement Data to Enhance Team Sport Analysis},
  number={1},
  volume={24},
  issn={1077-2626},
  journal={IEEE transactions on visualization and computer graphics},
  pages={13--22},
  author={Stein, Manuel and Janetzko, Halldor and Lamprecht, Andreas and Breitkreutz, Thorsten and Zimmermann, Philip and Goldlücke, Bastian and Schreck, Tobias and Andrienko, Gennady and Grossniklaus, Michael and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41137">
    <dc:contributor>Zimmermann, Philip</dc:contributor>
    <dc:creator>Andrienko, Gennady</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:title>Bring It to the Pitch : Combining Video and Movement Data to Enhance Team Sport Analysis</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Andrienko, Gennady</dc:contributor>
    <dc:creator>Lamprecht, Andreas</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41137"/>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Zimmermann, Philip</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T15:01:08Z</dc:date>
    <dc:contributor>Breitkreutz, Thorsten</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41137/1/Stein_2-hr3l95xf6fze7.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:issued>2018-01</dcterms:issued>
    <dc:contributor>Lamprecht, Andreas</dc:contributor>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41137/1/Stein_2-hr3l95xf6fze7.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T15:01:08Z</dcterms:available>
    <dc:creator>Breitkreutz, Thorsten</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:abstract xml:lang="eng">Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.</dcterms:abstract>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dc:creator>Janetzko, Halldor</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen