Visualizing Feature-based Similarity for Research Paper Recommendation
Visualizing Feature-based Similarity for Research Paper Recommendation
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2021 ACM/IEEE Joint Conference on Digital Libraries, JCDL 2021, Virtual Conference, Hosted by the University of Illinois at Urbana-Champaign, USA, 27-30 September 2021 ; Proceedings / Downie, J. Stephen et al. (Hrsg.). - Piscataway, NJ : IEEE, 2021. - S. 212-221. - ISBN 978-1-66541-770-9
Zusammenfassung
Research paper recommender systems are widely used by academics to discover and explore the most relevant publications on a topic. While existing recommendation interfaces present researchers with a ranked list of publications based on a global relevance score, they fail to visualize the full range of non-textual features uniquely present in academic publications: citations, figures, charts, or images, and mathematical formulae or expressions. Especially for STEM literature, examining such non-textual features efficiently can provide utility to researchers interested in answering specialized research questions or information needs. If research paper search and recommender systems are to consider the similarity of such features as one facet of a content-based similarity assessment for academic literature, new methods for visualizing these non-textual features are needed. In this paper, we review the state-of-the-art in visualizing feature-based similarity in documents. We subsequently propose a set of user-customizable visualization approaches tailored to STEM literature and the research paper recommendation context. Results from a study with 10 expert users show that the interactive visualization interface we propose for the exploration of non-textual features in publications can effectively address specialized information retrieval tasks, which cannot be addressed by existing research paper search or recommendation interfaces.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Joint Conference on Digital Libraries, JCDL 2021, 27. Sep. 2021 - 30. Sep. 2021, Virtual Conference
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
BREITINGER, Corinna, Harald REITERER, 2021. Visualizing Feature-based Similarity for Research Paper Recommendation. Joint Conference on Digital Libraries, JCDL 2021. Virtual Conference, 27. Sep. 2021 - 30. Sep. 2021. In: DOWNIE, J. Stephen, ed. and others. 2021 ACM/IEEE Joint Conference on Digital Libraries, JCDL 2021, Virtual Conference, Hosted by the University of Illinois at Urbana-Champaign, USA, 27-30 September 2021 ; Proceedings. Piscataway, NJ:IEEE, pp. 212-221. ISBN 978-1-66541-770-9. Available under: doi: 10.1109/JCDL52503.2021.00033BibTex
@inproceedings{Breitinger2021Visua-57008, year={2021}, doi={10.1109/JCDL52503.2021.00033}, title={Visualizing Feature-based Similarity for Research Paper Recommendation}, isbn={978-1-66541-770-9}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2021 ACM/IEEE Joint Conference on Digital Libraries, JCDL 2021, Virtual Conference, Hosted by the University of Illinois at Urbana-Champaign, USA, 27-30 September 2021 ; Proceedings}, pages={212--221}, editor={Downie, J. Stephen}, author={Breitinger, Corinna and Reiterer, Harald} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57008"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Reiterer, Harald</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57008"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-25T12:31:55Z</dcterms:available> <dc:creator>Breitinger, Corinna</dc:creator> <dcterms:issued>2021</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Reiterer, Harald</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-25T12:31:55Z</dc:date> <dcterms:abstract xml:lang="eng">Research paper recommender systems are widely used by academics to discover and explore the most relevant publications on a topic. While existing recommendation interfaces present researchers with a ranked list of publications based on a global relevance score, they fail to visualize the full range of non-textual features uniquely present in academic publications: citations, figures, charts, or images, and mathematical formulae or expressions. Especially for STEM literature, examining such non-textual features efficiently can provide utility to researchers interested in answering specialized research questions or information needs. If research paper search and recommender systems are to consider the similarity of such features as one facet of a content-based similarity assessment for academic literature, new methods for visualizing these non-textual features are needed. In this paper, we review the state-of-the-art in visualizing feature-based similarity in documents. We subsequently propose a set of user-customizable visualization approaches tailored to STEM literature and the research paper recommendation context. Results from a study with 10 expert users show that the interactive visualization interface we propose for the exploration of non-textual features in publications can effectively address specialized information retrieval tasks, which cannot be addressed by existing research paper search or recommendation interfaces.</dcterms:abstract> <dc:contributor>Breitinger, Corinna</dc:contributor> <dcterms:title>Visualizing Feature-based Similarity for Research Paper Recommendation</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja