Pattern formation mechanisms of self-organizing reaction-diffusion systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Embryonic development is a largely self-organizing process, in which the adult body plan arises from a ball of cells with initially nearly equal potency. The reaction-diffusion theory first proposed by Alan Turing states that the initial symmetry in embryos can be broken by the interplay between two diffusible molecules, whose interactions lead to the formation of patterns. The reaction-diffusion theory provides a valuable framework for self-organized pattern formation, but it has been difficult to relate simple two-component models to real biological systems with multiple interacting molecular species. Recent studies have addressed this shortcoming and extended the reaction-diffusion theory to realistic multi-component networks. These efforts have challenged the generality of previous central tenets derived from the analysis of simplified systems and guide the way to a new understanding of self-organizing processes. Here, we discuss the challenges in modeling multi-component reaction-diffusion systems and how these have recently been addressed. We present a synthesis of new pattern formation mechanisms derived from these analyses, and we highlight the significance of reaction-diffusion principles for developmental and synthetic pattern formation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LANDGE, Amit N., Benjamin M. JORDAN, Xavier DIEGO, Patrick MÜLLER, 2020. Pattern formation mechanisms of self-organizing reaction-diffusion systems. In: Developmental Biology. Elsevier. 2020, 460(1), pp. 2-11. ISSN 0012-1606. eISSN 1095-564X. Available under: doi: 10.1016/j.ydbio.2019.10.031BibTex
@article{Landge2020Patte-55617, year={2020}, doi={10.1016/j.ydbio.2019.10.031}, title={Pattern formation mechanisms of self-organizing reaction-diffusion systems}, number={1}, volume={460}, issn={0012-1606}, journal={Developmental Biology}, pages={2--11}, author={Landge, Amit N. and Jordan, Benjamin M. and Diego, Xavier and Müller, Patrick} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55617"> <dc:contributor>Diego, Xavier</dc:contributor> <dc:contributor>Jordan, Benjamin M.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T14:00:54Z</dc:date> <dcterms:issued>2020</dcterms:issued> <dcterms:title>Pattern formation mechanisms of self-organizing reaction-diffusion systems</dcterms:title> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55617"/> <dcterms:abstract xml:lang="eng">Embryonic development is a largely self-organizing process, in which the adult body plan arises from a ball of cells with initially nearly equal potency. The reaction-diffusion theory first proposed by Alan Turing states that the initial symmetry in embryos can be broken by the interplay between two diffusible molecules, whose interactions lead to the formation of patterns. The reaction-diffusion theory provides a valuable framework for self-organized pattern formation, but it has been difficult to relate simple two-component models to real biological systems with multiple interacting molecular species. Recent studies have addressed this shortcoming and extended the reaction-diffusion theory to realistic multi-component networks. These efforts have challenged the generality of previous central tenets derived from the analysis of simplified systems and guide the way to a new understanding of self-organizing processes. Here, we discuss the challenges in modeling multi-component reaction-diffusion systems and how these have recently been addressed. We present a synthesis of new pattern formation mechanisms derived from these analyses, and we highlight the significance of reaction-diffusion principles for developmental and synthetic pattern formation.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Jordan, Benjamin M.</dc:creator> <dc:creator>Müller, Patrick</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:creator>Diego, Xavier</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55617/1/Landge_2-ilqnsyohes0d6.pdf"/> <dc:contributor>Landge, Amit N.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55617/1/Landge_2-ilqnsyohes0d6.pdf"/> <dc:contributor>Müller, Patrick</dc:contributor> <dc:creator>Landge, Amit N.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T14:00:54Z</dcterms:available> </rdf:Description> </rdf:RDF>