Publikation: Improving Academic Plagiarism Detection for STEM Documents by Analyzing Mathematical Content and Citations
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Identifying academic plagiarism is a pressing task for educational and research institutions, publishers, and funding agencies. Current plagiarism detection systems reliably find instances of copied and moderately reworded text. However, reliably detecting concealed plagiarism, such as strong paraphrases, translations, and the reuse of nontextual content and ideas is an open research problem. In this paper, we extend our prior research on analyzing mathematical content and academic citations. Both are promising approaches for improving the detection of concealed academic plagiarism primarily in Science, Technology, Engineering and Mathematics (STEM). We make the following contributions: i) We present a two-stage detection process that combines similarity assessments of mathematical content, academic citations, and text. ii) We introduce new similarity measures that consider the order of mathematical features and outperform the measures in our prior research. iii) We compare the effectiveness of the math-based, citation-based, and text-based detection approaches using confirmed cases of academic plagiarism. iv) We demonstrate that the combined analysis of math-based and citation-based content features allows identifying potentially suspicious cases in a collection of 102K STEM documents. Overall, we show that analyzing the similarity of mathematical content and academic citations is a striking supplement for conventional text-based detection approaches for academic literature in the STEM disciplines. The data and code of our study are openly available at https://purl.org/hybridPD.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MEUSCHKE, Norman, Vincent STANGE, Moritz SCHUBOTZ, Michael KRAMER, Bela GIPP, 2019. Improving Academic Plagiarism Detection for STEM Documents by Analyzing Mathematical Content and Citations. 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL). Urbana-Champaign, Illinois, 2. Juni 2019 - 6. Juni 2019. In: BONN, Maria, ed. and others. 2019 ACM/IEEE Joint Conference on Digital Libraries : JCDL 2019 : proceedings : 2-6 June 2019, Urbana-Champaign, Illinois. Piscataway, NJ: IEEE, 2019, pp. 120-129. ISBN 978-1-72811-547-4. Available under: doi: 10.1109/JCDL.2019.00026BibTex
@inproceedings{Meuschke2019-06-27T16:07:47ZImpro-50945, year={2019}, doi={10.1109/JCDL.2019.00026}, title={Improving Academic Plagiarism Detection for STEM Documents by Analyzing Mathematical Content and Citations}, isbn={978-1-72811-547-4}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2019 ACM/IEEE Joint Conference on Digital Libraries : JCDL 2019 : proceedings : 2-6 June 2019, Urbana-Champaign, Illinois}, pages={120--129}, editor={Bonn, Maria}, author={Meuschke, Norman and Stange, Vincent and Schubotz, Moritz and Kramer, Michael and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50945"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Meuschke, Norman</dc:creator> <dcterms:title>Improving Academic Plagiarism Detection for STEM Documents by Analyzing Mathematical Content and Citations</dcterms:title> <dc:creator>Kramer, Michael</dc:creator> <dc:contributor>Stange, Vincent</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50945"/> <dcterms:issued>2019-06-27T16:07:47Z</dcterms:issued> <dc:contributor>Kramer, Michael</dc:contributor> <dc:contributor>Meuschke, Norman</dc:contributor> <dc:creator>Stange, Vincent</dc:creator> <dc:creator>Schubotz, Moritz</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-22T08:24:30Z</dc:date> <dc:contributor>Schubotz, Moritz</dc:contributor> <dcterms:abstract xml:lang="eng">Identifying academic plagiarism is a pressing task for educational and research institutions, publishers, and funding agencies. Current plagiarism detection systems reliably find instances of copied and moderately reworded text. However, reliably detecting concealed plagiarism, such as strong paraphrases, translations, and the reuse of nontextual content and ideas is an open research problem. In this paper, we extend our prior research on analyzing mathematical content and academic citations. Both are promising approaches for improving the detection of concealed academic plagiarism primarily in Science, Technology, Engineering and Mathematics (STEM). We make the following contributions: i) We present a two-stage detection process that combines similarity assessments of mathematical content, academic citations, and text. ii) We introduce new similarity measures that consider the order of mathematical features and outperform the measures in our prior research. iii) We compare the effectiveness of the math-based, citation-based, and text-based detection approaches using confirmed cases of academic plagiarism. iv) We demonstrate that the combined analysis of math-based and citation-based content features allows identifying potentially suspicious cases in a collection of 102K STEM documents. Overall, we show that analyzing the similarity of mathematical content and academic citations is a striking supplement for conventional text-based detection approaches for academic literature in the STEM disciplines. The data and code of our study are openly available at https://purl.org/hybridPD.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-22T08:24:30Z</dcterms:available> <dc:creator>Gipp, Bela</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>