A numerical investigation of Brockett’s ensemble optimal control problems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper is devoted to the numerical analysis of non-smooth ensemble optimal control problems governed by the Liouville (continuity) equation that have been originally proposed by R.W. Brockett with the purpose of determining an efficient and robust control strategy for dynamical systems. A numerical methodology for solving these problems is presented that is based on a non-smooth Lagrange optimization framework where the optimal controls are characterized as solutions to the related optimality systems. For this purpose, approximation and solution schemes are developed and analysed. Specifically, for the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov–Tadmor method, a Runge–Kutta scheme, and a Strang splitting method are discussed. The resulting optimality system is solved by a projected semi-smooth Krylov–Newton method. Results of numerical experiments are presented that successfully validate the proposed framework.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTSCH, Jan, Alfio BORZÌ, Francesco FANELLI, Souvik ROY, 2021. A numerical investigation of Brockett’s ensemble optimal control problems. In: Numerische Mathematik. Springer. 2021, 149(1), pp. 1-42. ISSN 0029-599X. eISSN 0945-3245. Available under: doi: 10.1007/s00211-021-01223-6BibTex
@article{Bartsch2021numer-58557, year={2021}, doi={10.1007/s00211-021-01223-6}, title={A numerical investigation of Brockett’s ensemble optimal control problems}, number={1}, volume={149}, issn={0029-599X}, journal={Numerische Mathematik}, pages={1--42}, author={Bartsch, Jan and Borzì, Alfio and Fanelli, Francesco and Roy, Souvik} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58557"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58557/1/Bartsch_2-j1o4hh0j0m9z8.pdf"/> <dc:creator>Borzì, Alfio</dc:creator> <dc:creator>Roy, Souvik</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58557"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:25:46Z</dcterms:available> <dc:contributor>Fanelli, Francesco</dc:contributor> <dc:creator>Bartsch, Jan</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:issued>2021</dcterms:issued> <dcterms:title>A numerical investigation of Brockett’s ensemble optimal control problems</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">This paper is devoted to the numerical analysis of non-smooth ensemble optimal control problems governed by the Liouville (continuity) equation that have been originally proposed by R.W. Brockett with the purpose of determining an efficient and robust control strategy for dynamical systems. A numerical methodology for solving these problems is presented that is based on a non-smooth Lagrange optimization framework where the optimal controls are characterized as solutions to the related optimality systems. For this purpose, approximation and solution schemes are developed and analysed. Specifically, for the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov–Tadmor method, a Runge–Kutta scheme, and a Strang splitting method are discussed. The resulting optimality system is solved by a projected semi-smooth Krylov–Newton method. Results of numerical experiments are presented that successfully validate the proposed framework.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58557/1/Bartsch_2-j1o4hh0j0m9z8.pdf"/> <dc:contributor>Borzì, Alfio</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:25:46Z</dc:date> <dc:contributor>Bartsch, Jan</dc:contributor> <dc:contributor>Roy, Souvik</dc:contributor> <dc:creator>Fanelli, Francesco</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>