Publikation:

Estimates for solutions of a parameter-elliptic multi-order system of differential equations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Faierman, Melvin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Integral Equations and Operator Theory. 2010, 66(3), pp. 327-365. ISSN 0378-620X. Available under: doi: 10.1007/s00020-010-1753-3

Zusammenfassung

This paper is concerned with a boundary value problem defined over a bounded region of Euclidean space, and in particular it is devoted to the establishment of a priori estimates for solutions of a parameter-elliptic multi-order system of differential equations under limited smoothness assumptions. In this endeavour we extend the results of Agranovich, Denk, and Faierman pertaining to a priori estimates for solutions associated with a parameter-elliptic scalar problem, as well as the results of various other authors who have extended the results of Agranovich et. al. from the scalar case to parameter-elliptic systems of operators which are either of homogeneous type or have the property that the diagonal operators are all of the same order. In addition, we extend some results of Kozhevnikov and Denk and Volevich who have also dealt with sytems of the kind under consideration here, in that one of the works of Kozhevnikov deals only with 2 × 2 systems, while the other, as well as the work of the last two authors, do not cover Dirichlet boundary conditions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Parameter-ellipticity, multi-order systems, a priori estimates

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690DENK, Robert, Melvin FAIERMAN, 2010. Estimates for solutions of a parameter-elliptic multi-order system of differential equations. In: Integral Equations and Operator Theory. 2010, 66(3), pp. 327-365. ISSN 0378-620X. Available under: doi: 10.1007/s00020-010-1753-3
BibTex
@article{Denk2010Estim-12742,
  year={2010},
  doi={10.1007/s00020-010-1753-3},
  title={Estimates for solutions of a parameter-elliptic multi-order system of differential equations},
  number={3},
  volume={66},
  issn={0378-620X},
  journal={Integral Equations and Operator Theory},
  pages={327--365},
  author={Denk, Robert and Faierman, Melvin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12742">
    <dc:creator>Faierman, Melvin</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:bibliographicCitation>Publ. in: Integral Equations Operator Theory 66 (2010), 3, pp. 327-365</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T07:42:25Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">This paper is concerned with a boundary value problem defined over a bounded region of Euclidean space, and in particular it is devoted to the establishment of a priori estimates for solutions of a parameter-elliptic multi-order system of differential equations under limited smoothness assumptions. In this endeavour we extend the results of Agranovich, Denk, and Faierman pertaining to a priori estimates for solutions associated with a parameter-elliptic scalar problem, as well as the results of various other authors who have extended the results of Agranovich et. al. from the scalar case to parameter-elliptic systems of operators which are either of homogeneous type or have the property that the diagonal operators are all of the same order. In addition, we extend some results of Kozhevnikov and Denk and Volevich who have also dealt with sytems of the kind under consideration here, in that one of the works of Kozhevnikov deals only with 2 × 2 systems, while the other, as well as the work of the last two authors, do not cover Dirichlet boundary conditions.</dcterms:abstract>
    <dc:contributor>Faierman, Melvin</dc:contributor>
    <dc:contributor>Denk, Robert</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12742"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-15T07:42:25Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Estimates for solutions of a parameter-elliptic multi-order system of differential equations</dcterms:title>
    <dc:creator>Denk, Robert</dc:creator>
    <dcterms:issued>2010</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen