Publikation:

Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Ghosh, Sucharita

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Statistical Papers. 2015, 56(2), pp. 431-451. ISSN 0932-5026. eISSN 1613-9798. Available under: doi: 10.1007/s00362-014-0590-x

Zusammenfassung

Duration series often exhibit long-range dependence and local nonstationarities. Here, exponential FARIMA (EFARIMA) and exponential SEMIFAR (ESEMIFAR) models are introduced. These models capture simultaneously nonstationarities in the mean as well as short- and long-range dependence, while avoiding the complication of unobservable latent processes. The models can be thought of as locally stationary long-memory extensions of exponential ACD models. Statistical properties of the models are derived. In particular the long-memory parameter in the original and the log-transformed process is the same. For Gaussian innovations, exact explicit formulas for all moments and autocovariances are given, and the unconditional distribution is log-normal. Estimation and model selection can be carried out with standard software. The approach is illustrated by an application to average daily transaction durations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Long-memory MEM model, Exponential FARIMA, Exponential ACD, Exponential SEMIFAR Nonparametric scale function Average durations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690BERAN, Jan, Yuanhua FENG, Sucharita GHOSH, 2015. Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models. In: Statistical Papers. 2015, 56(2), pp. 431-451. ISSN 0932-5026. eISSN 1613-9798. Available under: doi: 10.1007/s00362-014-0590-x
BibTex
@article{Beran2015Model-29162,
  year={2015},
  doi={10.1007/s00362-014-0590-x},
  title={Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models},
  number={2},
  volume={56},
  issn={0932-5026},
  journal={Statistical Papers},
  pages={431--451},
  author={Beran, Jan and Feng, Yuanhua and Ghosh, Sucharita}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29162">
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <dcterms:title>Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29162"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-22T08:47:35Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-22T08:47:35Z</dcterms:available>
    <dcterms:issued>2015</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Beran, Jan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:abstract xml:lang="eng">Duration series often exhibit long-range dependence and local nonstationarities. Here, exponential FARIMA (EFARIMA) and exponential SEMIFAR (ESEMIFAR) models are introduced. These models capture simultaneously nonstationarities in the mean as well as short- and long-range dependence, while avoiding the complication of unobservable latent processes. The models can be thought of as locally stationary long-memory extensions of exponential ACD models. Statistical properties of the models are derived. In particular the long-memory parameter in the original and the log-transformed process is the same. For Gaussian innovations, exact explicit formulas for all moments and autocovariances are given, and the unconditional distribution is log-normal. Estimation and model selection can be carried out with standard software. The approach is illustrated by an application to average daily transaction durations.</dcterms:abstract>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen