Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models

No Thumbnail Available
Files
There are no files associated with this item.
Date
2015
Authors
Ghosh, Sucharita
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Statistical Papers ; 56 (2015), 2. - pp. 431-451. - ISSN 0932-5026. - eISSN 1613-9798
Abstract
Duration series often exhibit long-range dependence and local nonstationarities. Here, exponential FARIMA (EFARIMA) and exponential SEMIFAR (ESEMIFAR) models are introduced. These models capture simultaneously nonstationarities in the mean as well as short- and long-range dependence, while avoiding the complication of unobservable latent processes. The models can be thought of as locally stationary long-memory extensions of exponential ACD models. Statistical properties of the models are derived. In particular the long-memory parameter in the original and the log-transformed process is the same. For Gaussian innovations, exact explicit formulas for all moments and autocovariances are given, and the unconditional distribution is log-normal. Estimation and model selection can be carried out with standard software. The approach is illustrated by an application to average daily transaction durations.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Long-memory MEM model, Exponential FARIMA, Exponential ACD, Exponential SEMIFAR Nonparametric scale function Average durations
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BERAN, Jan, Yuanhua FENG, Sucharita GHOSH, 2015. Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models. In: Statistical Papers. 56(2), pp. 431-451. ISSN 0932-5026. eISSN 1613-9798. Available under: doi: 10.1007/s00362-014-0590-x
BibTex
@article{Beran2015Model-29162,
  year={2015},
  doi={10.1007/s00362-014-0590-x},
  title={Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models},
  number={2},
  volume={56},
  issn={0932-5026},
  journal={Statistical Papers},
  pages={431--451},
  author={Beran, Jan and Feng, Yuanhua and Ghosh, Sucharita}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29162">
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <dcterms:title>Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29162"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-22T08:47:35Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-22T08:47:35Z</dcterms:available>
    <dcterms:issued>2015</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Beran, Jan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:abstract xml:lang="eng">Duration series often exhibit long-range dependence and local nonstationarities. Here, exponential FARIMA (EFARIMA) and exponential SEMIFAR (ESEMIFAR) models are introduced. These models capture simultaneously nonstationarities in the mean as well as short- and long-range dependence, while avoiding the complication of unobservable latent processes. The models can be thought of as locally stationary long-memory extensions of exponential ACD models. Statistical properties of the models are derived. In particular the long-memory parameter in the original and the log-transformed process is the same. For Gaussian innovations, exact explicit formulas for all moments and autocovariances are given, and the unconditional distribution is log-normal. Estimation and model selection can be carried out with standard software. The approach is illustrated by an application to average daily transaction durations.</dcterms:abstract>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed