Combining formal methods and Bayesian approach for inferring discrete-state stochastic models from steady-state data

Lade...
Vorschaubild
Dateien
Klein_2-kb5e0soknxmn8.pdf
Klein_2-kb5e0soknxmn8.pdfGröße: 2.5 MBDownloads: 8
Datum
2023
Autor:innen
Phung, Huy
Šafránek, David
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 422037984
Deutsche Forschungsgemeinschaft (DFG): 422037984
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
PLoS ONE. Public Library of Science (PLoS). 2023, 18(11), e0291151. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0291151
Zusammenfassung

Stochastic population models are widely used to model phenomena in different areas such as cyber-physical systems, chemical kinetics, collective animal behaviour, and beyond. Quantitative analysis of stochastic population models easily becomes challenging due to the combinatorial number of possible states of the population. Moreover, while the modeller easily hypothesises the mechanistic aspects of the model, the quantitative parameters associated to these mechanistic transitions are difficult or impossible to measure directly. In this paper, we investigate how formal verification methods can aid parameter inference for population discrete-time Markov chains in a scenario where only a limited sample of population-level data measurements—sample distributions among terminal states—are available. We first discuss the parameter identifiability and uncertainty quantification in this setup, as well as how the existing techniques of formal parameter synthesis and Bayesian inference apply. Then, we propose and implement four different methods, three of which incorporate formal parameter synthesis as a pre-computation step. We empirically evaluate the performance of the proposed methods over four representative case studies. We find that our proposed methods incorporating formal parameter synthesis as a pre-computation step allow us to significantly enhance the accuracy, precision, and scalability of inference. Specifically, in the case of unidentifiable parameters, we accurately capture the subspace of parameters which is data-compliant at a desired confidence level.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KLEIN, Julia, Huy PHUNG, Matej HAJNAL, David ŠAFRÁNEK, Tatjana PETROV, 2023. Combining formal methods and Bayesian approach for inferring discrete-state stochastic models from steady-state data. In: PLoS ONE. Public Library of Science (PLoS). 2023, 18(11), e0291151. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0291151
BibTex
@article{Klein2023-11-13Combi-69059,
  year={2023},
  doi={10.1371/journal.pone.0291151},
  title={Combining formal methods and Bayesian approach for inferring discrete-state stochastic models from steady-state data},
  number={11},
  volume={18},
  journal={PLoS ONE},
  author={Klein, Julia and Phung, Huy and Hajnal, Matej and Šafránek, David and Petrov, Tatjana},
  note={Article Number: e0291151}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69059">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69059/1/Klein_2-kb5e0soknxmn8.pdf"/>
    <dc:creator>Phung, Huy</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-16T09:49:54Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2023-11-13</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Klein, Julia</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Šafránek, David</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Klein, Julia</dc:contributor>
    <dc:creator>Šafránek, David</dc:creator>
    <dc:creator>Hajnal, Matej</dc:creator>
    <dcterms:title>Combining formal methods and Bayesian approach for inferring discrete-state stochastic models from steady-state data</dcterms:title>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dc:contributor>Phung, Huy</dc:contributor>
    <dc:contributor>Hajnal, Matej</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-16T09:49:54Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69059"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69059/1/Klein_2-kb5e0soknxmn8.pdf"/>
    <dcterms:abstract>Stochastic population models are widely used to model phenomena in different areas such as cyber-physical systems, chemical kinetics, collective animal behaviour, and beyond. Quantitative analysis of stochastic population models easily becomes challenging due to the combinatorial number of possible states of the population. Moreover, while the modeller easily hypothesises the mechanistic aspects of the model, the quantitative parameters associated to these mechanistic transitions are difficult or impossible to measure directly. In this paper, we investigate how formal verification methods can aid parameter inference for population discrete-time Markov chains in a scenario where only a limited sample of population-level data measurements—sample distributions among terminal states—are available. We first discuss the parameter identifiability and uncertainty quantification in this setup, as well as how the existing techniques of formal parameter synthesis and Bayesian inference apply. Then, we propose and implement four different methods, three of which incorporate formal parameter synthesis as a pre-computation step. We empirically evaluate the performance of the proposed methods over four representative case studies. We find that our proposed methods incorporating formal parameter synthesis as a pre-computation step allow us to significantly enhance the accuracy, precision, and scalability of inference. Specifically, in the case of unidentifiable parameters, we accurately capture the subspace of parameters which is data-compliant at a desired confidence level.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen