Publikation: Reflection groups, reflection arrangements, and invariant real varieties
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Let X be a nonempty real variety that is invariant under the action of a reflection group G. We conjecture that if X is defined in terms of the first k basic invariants of G (ordered by degree), then X meets a k-dimensional flat of the associated reflection arrangement. We prove this conjecture for the infinite types, reflection groups of rank at most 3, and F4 and we give computational evidence for H4. This is a generalization of Timofte’s degree principle to reflection groups. For general reflection groups, we compute nontrivial upper bounds on the minimal dimension of flats of the reflection arrangement meeting X from the combinatorics of parabolic subgroups. We also give generalizations to real varieties invariant under Lie groups.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FRIEDL, Tobias, Cordian RIENER, Raman SANYAL, 2018. Reflection groups, reflection arrangements, and invariant real varieties. In: Proceedings of the American Mathematical Society. 2018, 146(3), pp. 1031-1045. ISSN 0002-9939. eISSN 1088-6826. Available under: doi: 10.1090/proc/13821BibTex
@article{Friedl2018-03-01Refle-41297, year={2018}, doi={10.1090/proc/13821}, title={Reflection groups, reflection arrangements, and invariant real varieties}, number={3}, volume={146}, issn={0002-9939}, journal={Proceedings of the American Mathematical Society}, pages={1031--1045}, author={Friedl, Tobias and Riener, Cordian and Sanyal, Raman} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41297"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">Let X be a nonempty real variety that is invariant under the action of a reflection group G. We conjecture that if X is defined in terms of the first k basic invariants of G (ordered by degree), then X meets a k-dimensional flat of the associated reflection arrangement. We prove this conjecture for the infinite types, reflection groups of rank at most 3, and F<sub>4</sub> and we give computational evidence for H<sub>4</sub>. This is a generalization of Timofte’s degree principle to reflection groups. For general reflection groups, we compute nontrivial upper bounds on the minimal dimension of flats of the reflection arrangement meeting X from the combinatorics of parabolic subgroups. We also give generalizations to real varieties invariant under Lie groups.</dcterms:abstract> <dcterms:issued>2018-03-01</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41297"/> <dc:creator>Friedl, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-12T12:08:32Z</dcterms:available> <dcterms:title>Reflection groups, reflection arrangements, and invariant real varieties</dcterms:title> <dc:contributor>Sanyal, Raman</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-12T12:08:32Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Friedl, Tobias</dc:contributor> <dc:creator>Riener, Cordian</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Riener, Cordian</dc:contributor> <dc:creator>Sanyal, Raman</dc:creator> </rdf:Description> </rdf:RDF>