Publikation:

Reflection groups, reflection arrangements, and invariant real varieties

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Friedl, Tobias
Sanyal, Raman

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Proceedings of the American Mathematical Society. 2018, 146(3), pp. 1031-1045. ISSN 0002-9939. eISSN 1088-6826. Available under: doi: 10.1090/proc/13821

Zusammenfassung

Let X be a nonempty real variety that is invariant under the action of a reflection group G. We conjecture that if X is defined in terms of the first k basic invariants of G (ordered by degree), then X meets a k-dimensional flat of the associated reflection arrangement. We prove this conjecture for the infinite types, reflection groups of rank at most 3, and F4 and we give computational evidence for H4. This is a generalization of Timofte’s degree principle to reflection groups. For general reflection groups, we compute nontrivial upper bounds on the minimal dimension of flats of the reflection arrangement meeting X from the combinatorics of parabolic subgroups. We also give generalizations to real varieties invariant under Lie groups.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690FRIEDL, Tobias, Cordian RIENER, Raman SANYAL, 2018. Reflection groups, reflection arrangements, and invariant real varieties. In: Proceedings of the American Mathematical Society. 2018, 146(3), pp. 1031-1045. ISSN 0002-9939. eISSN 1088-6826. Available under: doi: 10.1090/proc/13821
BibTex
@article{Friedl2018-03-01Refle-41297,
  year={2018},
  doi={10.1090/proc/13821},
  title={Reflection groups, reflection arrangements, and invariant real varieties},
  number={3},
  volume={146},
  issn={0002-9939},
  journal={Proceedings of the American Mathematical Society},
  pages={1031--1045},
  author={Friedl, Tobias and Riener, Cordian and Sanyal, Raman}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41297">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Let X be a nonempty real variety that is invariant under the action of a reflection group G. We conjecture that if X is defined in terms of the first k basic invariants of G (ordered by degree), then X meets a k-dimensional flat of the associated reflection arrangement. We prove this conjecture for the infinite types, reflection groups of rank at most 3, and F&lt;sub&gt;4&lt;/sub&gt; and we give computational evidence for H&lt;sub&gt;4&lt;/sub&gt;. This is a generalization of Timofte’s degree principle to reflection groups. For general reflection groups, we compute nontrivial upper bounds on the minimal dimension of flats of the reflection arrangement meeting X from the combinatorics of parabolic subgroups. We also give generalizations to real varieties invariant under Lie groups.</dcterms:abstract>
    <dcterms:issued>2018-03-01</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41297"/>
    <dc:creator>Friedl, Tobias</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-12T12:08:32Z</dcterms:available>
    <dcterms:title>Reflection groups, reflection arrangements, and invariant real varieties</dcterms:title>
    <dc:contributor>Sanyal, Raman</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-12T12:08:32Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Friedl, Tobias</dc:contributor>
    <dc:creator>Riener, Cordian</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Riener, Cordian</dc:contributor>
    <dc:creator>Sanyal, Raman</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen