Reflection groups, reflection arrangements, and invariant real varieties
Reflection groups, reflection arrangements, and invariant real varieties
No Thumbnail Available
Files
There are no files associated with this item.
Date
2018
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Proceedings of the American Mathematical Society ; 146 (2018), 3. - pp. 1031-1045. - ISSN 0002-9939. - eISSN 1088-6826
Abstract
Let X be a nonempty real variety that is invariant under the action of a reflection group G. We conjecture that if X is defined in terms of the first k basic invariants of G (ordered by degree), then X meets a k-dimensional flat of the associated reflection arrangement. We prove this conjecture for the infinite types, reflection groups of rank at most 3, and F4 and we give computational evidence for H4. This is a generalization of Timofte’s degree principle to reflection groups. For general reflection groups, we compute nontrivial upper bounds on the minimal dimension of flats of the reflection arrangement meeting X from the combinatorics of parabolic subgroups. We also give generalizations to real varieties invariant under Lie groups.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
FRIEDL, Tobias, Cordian RIENER, Raman SANYAL, 2018. Reflection groups, reflection arrangements, and invariant real varieties. In: Proceedings of the American Mathematical Society. 146(3), pp. 1031-1045. ISSN 0002-9939. eISSN 1088-6826. Available under: doi: 10.1090/proc/13821BibTex
@article{Friedl2018-03-01Refle-41297, year={2018}, doi={10.1090/proc/13821}, title={Reflection groups, reflection arrangements, and invariant real varieties}, number={3}, volume={146}, issn={0002-9939}, journal={Proceedings of the American Mathematical Society}, pages={1031--1045}, author={Friedl, Tobias and Riener, Cordian and Sanyal, Raman} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41297"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">Let X be a nonempty real variety that is invariant under the action of a reflection group G. We conjecture that if X is defined in terms of the first k basic invariants of G (ordered by degree), then X meets a k-dimensional flat of the associated reflection arrangement. We prove this conjecture for the infinite types, reflection groups of rank at most 3, and F<sub>4</sub> and we give computational evidence for H<sub>4</sub>. This is a generalization of Timofte’s degree principle to reflection groups. For general reflection groups, we compute nontrivial upper bounds on the minimal dimension of flats of the reflection arrangement meeting X from the combinatorics of parabolic subgroups. We also give generalizations to real varieties invariant under Lie groups.</dcterms:abstract> <dcterms:issued>2018-03-01</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41297"/> <dc:creator>Friedl, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-12T12:08:32Z</dcterms:available> <dcterms:title>Reflection groups, reflection arrangements, and invariant real varieties</dcterms:title> <dc:contributor>Sanyal, Raman</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-12T12:08:32Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Friedl, Tobias</dc:contributor> <dc:creator>Riener, Cordian</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Riener, Cordian</dc:contributor> <dc:creator>Sanyal, Raman</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes