Publikation:

Reinforcement Learning Enables Resource Partitioning in Foraging Bats

Lade...
Vorschaubild

Dateien

Goldshtein_2-kcw6lfw3e92k4.pdf
Goldshtein_2-kcw6lfw3e92k4.pdfGröße: 2.93 MBDownloads: 31

Datum

2020

Autor:innen

Handel, Michal
Eitan, Ofri
Bonstein, Afrine
Shaler, Talia
Collet, Simon
Greif, Stefan
Medellín, Rodrigo A.
Emek, Yuval
Yovel, Yossi
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Current biology : CB. Elsevier. 2020, 30(20), pp. 4096-4102.e6. ISSN 0960-9822. eISSN 1879-0445. Available under: doi: 10.1016/j.cub.2020.07.079

Zusammenfassung

Every evening, from late spring to mid-summer, tens of thousands of hungry lactating female lesser long-nosed bats (Leptonycteris yerbabuenae) emerge from their roost and navigate over the Sonoran Desert, seeking for nectar and pollen [1, 2]. The bats roost in a huge maternal colony that is far from the foraging grounds but allows their pups to thermoregulate [3] while the mothers are foraging. Thus, the mothers have to fly tens of kilometers to the foraging sites-fields with thousands of Saguaro cacti [4, 5]. Once at the field, they must compete with many other bats over the same flowering cacti. Several solutions have been suggested for this classical foraging task of exploiting a resource composed of many renewable food sources whose locations are fixed. Some animals randomly visit the food sources [6], and some actively defend a restricted foraging territory [7-11] or use simple forms of learning, such as "win-stay lose-switch" strategy [12]. Many species have been suggested to follow a trapline, that is, to revisit the food sources in a repeating ordered manner [13-22]. We thus hypothesized that lesser long-nosed bats would visit cacti in a sequenced manner. Using miniature GPS devices, aerial imaging, and video recordings, we tracked the full movement of the bats and all of their visits to their natural food sources. Based on real data and evolutionary simulations, we argue that the bats use a reinforcement learning strategy that requires minimal memory to create small, non-overlapping cacti-cores and exploit nectar efficiently, without social communication.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

nectar feeding bats, reinforcement learning, resource partitioning, trapline, behavioral ecology, movement ecology, territories

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690GOLDSHTEIN, Aya, Michal HANDEL, Ofri EITAN, Afrine BONSTEIN, Talia SHALER, Simon COLLET, Stefan GREIF, Rodrigo A. MEDELLÍN, Yuval EMEK, Yossi YOVEL, 2020. Reinforcement Learning Enables Resource Partitioning in Foraging Bats. In: Current biology : CB. Elsevier. 2020, 30(20), pp. 4096-4102.e6. ISSN 0960-9822. eISSN 1879-0445. Available under: doi: 10.1016/j.cub.2020.07.079
BibTex
@article{Goldshtein2020Reinf-54868,
  year={2020},
  doi={10.1016/j.cub.2020.07.079},
  title={Reinforcement Learning Enables Resource Partitioning in Foraging Bats},
  number={20},
  volume={30},
  issn={0960-9822},
  journal={Current biology : CB},
  pages={4096--4102.e6},
  author={Goldshtein, Aya and Handel, Michal and Eitan, Ofri and Bonstein, Afrine and Shaler, Talia and Collet, Simon and Greif, Stefan and Medellín, Rodrigo A. and Emek, Yuval and Yovel, Yossi}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54868">
    <dc:contributor>Greif, Stefan</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Reinforcement Learning Enables Resource Partitioning in Foraging Bats</dcterms:title>
    <dc:creator>Shaler, Talia</dc:creator>
    <dc:creator>Emek, Yuval</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:contributor>Handel, Michal</dc:contributor>
    <dc:contributor>Bonstein, Afrine</dc:contributor>
    <dc:creator>Handel, Michal</dc:creator>
    <dc:contributor>Emek, Yuval</dc:contributor>
    <dc:contributor>Shaler, Talia</dc:contributor>
    <dc:creator>Eitan, Ofri</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54868"/>
    <dc:creator>Yovel, Yossi</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:creator>Greif, Stefan</dc:creator>
    <dc:contributor>Collet, Simon</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54868/1/Goldshtein_2-kcw6lfw3e92k4.pdf"/>
    <dcterms:abstract xml:lang="eng">Every evening, from late spring to mid-summer, tens of thousands of hungry lactating female lesser long-nosed bats (Leptonycteris yerbabuenae) emerge from their roost and navigate over the Sonoran Desert, seeking for nectar and pollen [1, 2]. The bats roost in a huge maternal colony that is far from the foraging grounds but allows their pups to thermoregulate [3] while the mothers are foraging. Thus, the mothers have to fly tens of kilometers to the foraging sites-fields with thousands of Saguaro cacti [4, 5]. Once at the field, they must compete with many other bats over the same flowering cacti. Several solutions have been suggested for this classical foraging task of exploiting a resource composed of many renewable food sources whose locations are fixed. Some animals randomly visit the food sources [6], and some actively defend a restricted foraging territory [7-11] or use simple forms of learning, such as "win-stay lose-switch" strategy [12]. Many species have been suggested to follow a trapline, that is, to revisit the food sources in a repeating ordered manner [13-22]. We thus hypothesized that lesser long-nosed bats would visit cacti in a sequenced manner. Using miniature GPS devices, aerial imaging, and video recordings, we tracked the full movement of the bats and all of their visits to their natural food sources. Based on real data and evolutionary simulations, we argue that the bats use a reinforcement learning strategy that requires minimal memory to create small, non-overlapping cacti-cores and exploit nectar efficiently, without social communication.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Goldshtein, Aya</dc:contributor>
    <dc:contributor>Yovel, Yossi</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Medellín, Rodrigo A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-13T10:29:56Z</dc:date>
    <dc:contributor>Eitan, Ofri</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-13T10:29:56Z</dcterms:available>
    <dc:creator>Bonstein, Afrine</dc:creator>
    <dc:creator>Goldshtein, Aya</dc:creator>
    <dc:contributor>Medellín, Rodrigo A.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54868/1/Goldshtein_2-kcw6lfw3e92k4.pdf"/>
    <dc:creator>Collet, Simon</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen