Uniform dissipativity for mixed-order hyperbolic systems, with an application to relativistic fluid dynamics
Uniform dissipativity for mixed-order hyperbolic systems, with an application to relativistic fluid dynamics
No Thumbnail Available
Files
There are no files associated with this item.
Date
2022
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Journal of Differential Equations ; 325 (2022). - pp. 70-81. - Elsevier. - ISSN 0022-0396. - eISSN 1090-2732
Abstract
This paper extends a characterization of uniform dissipativity given in a previous publication by two of the authors for second-order hyperbolic systems to an equally natural class of hyperbolic systems of mixed order. These systems are finite-speed-of-propagation counterparts of symmetric hyperbolic-parabolic systems, and the characterizing condition obtained plays a role analogous to the Kawashima condition, inducing decay rates for all Fourier modes in a way that gives – at least for linear constant-coefficients problems, to which this paper restricts attention – uniform decay of solutions in L2 based Sobolev spaces.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
FREISTÜHLER, Heinrich, Moritz REINTJES, Matthias SROCZINSKI, 2022. Uniform dissipativity for mixed-order hyperbolic systems, with an application to relativistic fluid dynamics. In: Journal of Differential Equations. Elsevier. 325, pp. 70-81. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2022.04.008BibTex
@article{Freistuhler2022Unifo-57710, year={2022}, doi={10.1016/j.jde.2022.04.008}, title={Uniform dissipativity for mixed-order hyperbolic systems, with an application to relativistic fluid dynamics}, volume={325}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={70--81}, author={Freistühler, Heinrich and Reintjes, Moritz and Sroczinski, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57710"> <dc:contributor>Freistühler, Heinrich</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-01T07:05:31Z</dcterms:available> <dc:creator>Sroczinski, Matthias</dc:creator> <dc:contributor>Reintjes, Moritz</dc:contributor> <dcterms:title>Uniform dissipativity for mixed-order hyperbolic systems, with an application to relativistic fluid dynamics</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-01T07:05:31Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2022</dcterms:issued> <dcterms:abstract xml:lang="eng">This paper extends a characterization of uniform dissipativity given in a previous publication by two of the authors for second-order hyperbolic systems to an equally natural class of hyperbolic systems of mixed order. These systems are finite-speed-of-propagation counterparts of symmetric hyperbolic-parabolic systems, and the characterizing condition obtained plays a role analogous to the Kawashima condition, inducing decay rates for all Fourier modes in a way that gives – at least for linear constant-coefficients problems, to which this paper restricts attention – uniform decay of solutions in L<sup>2</sup> based Sobolev spaces.</dcterms:abstract> <dc:creator>Reintjes, Moritz</dc:creator> <dc:creator>Freistühler, Heinrich</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57710"/> <dc:language>eng</dc:language> <dc:contributor>Sroczinski, Matthias</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes