Uniform dissipativity for mixed-order hyperbolic systems, with an application to relativistic fluid dynamics

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Differential Equations. Elsevier. 2022, 325, pp. 70-81. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2022.04.008
Zusammenfassung

This paper extends a characterization of uniform dissipativity given in a previous publication by two of the authors for second-order hyperbolic systems to an equally natural class of hyperbolic systems of mixed order. These systems are finite-speed-of-propagation counterparts of symmetric hyperbolic-parabolic systems, and the characterizing condition obtained plays a role analogous to the Kawashima condition, inducing decay rates for all Fourier modes in a way that gives – at least for linear constant-coefficients problems, to which this paper restricts attention – uniform decay of solutions in L2 based Sobolev spaces.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690FREISTÜHLER, Heinrich, Moritz REINTJES, Matthias SROCZINSKI, 2022. Uniform dissipativity for mixed-order hyperbolic systems, with an application to relativistic fluid dynamics. In: Journal of Differential Equations. Elsevier. 2022, 325, pp. 70-81. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2022.04.008
BibTex
@article{Freistuhler2022Unifo-57710,
  year={2022},
  doi={10.1016/j.jde.2022.04.008},
  title={Uniform dissipativity for mixed-order hyperbolic systems, with an application to relativistic fluid dynamics},
  volume={325},
  issn={0022-0396},
  journal={Journal of Differential Equations},
  pages={70--81},
  author={Freistühler, Heinrich and Reintjes, Moritz and Sroczinski, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57710">
    <dc:contributor>Freistühler, Heinrich</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-01T07:05:31Z</dcterms:available>
    <dc:creator>Sroczinski, Matthias</dc:creator>
    <dc:contributor>Reintjes, Moritz</dc:contributor>
    <dcterms:title>Uniform dissipativity for mixed-order hyperbolic systems, with an application to relativistic fluid dynamics</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-01T07:05:31Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:abstract xml:lang="eng">This paper extends a characterization of uniform dissipativity given in a previous publication by two of the authors for second-order hyperbolic systems to an equally natural class of hyperbolic systems of mixed order. These systems are finite-speed-of-propagation counterparts of symmetric hyperbolic-parabolic systems, and the characterizing condition obtained plays a role analogous to the Kawashima condition, inducing decay rates for all Fourier modes in a way that gives – at least for linear constant-coefficients problems, to which this paper restricts attention – uniform decay of solutions in L&lt;sup&gt;2&lt;/sup&gt; based Sobolev spaces.</dcterms:abstract>
    <dc:creator>Reintjes, Moritz</dc:creator>
    <dc:creator>Freistühler, Heinrich</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57710"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Sroczinski, Matthias</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen