Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2000
Autor:innen
Zhou, Xun Yu
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
SIAM Journal on Control and Optimization. 2000, 38(5), pp. 1392-1407. ISSN 0363-0129. eISSN 1095-7138. Available under: doi: 10.1137/S036301299834973X
Zusammenfassung

It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an it additional martingale term and an indefinite initial state. This paper attempts to explore the relationship between BSDEs and stochastic controls by interpreting BSDEs as some stochastic optimal control problems. More specifically, associated with a BSDE, a new stochastic control problem is introduced with the same dynamics but a definite given initial state. The martingale term in the original BSDE is regarded as the control, and the objective is to minimize the second moment of the difference between the terminal state and the terminal value given in the BSDE. This problem is solved in a closed form by the stochastic linear-quadratic (LQ) theory developed recently. The general result is then applied to the Black--Scholes model, where an optimal mean-variance hedging portfolio is obtained explicitly in terms of the option price. Finally, a modified model is investigated, where the difference between the state and the expectation of the given terminal value at any time is taken into account.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KOHLMANN, Michael, Xun Yu ZHOU, 2000. Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach. In: SIAM Journal on Control and Optimization. 2000, 38(5), pp. 1392-1407. ISSN 0363-0129. eISSN 1095-7138. Available under: doi: 10.1137/S036301299834973X
BibTex
@article{Kohlmann2000Relat-25845,
  year={2000},
  doi={10.1137/S036301299834973X},
  title={Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach},
  number={5},
  volume={38},
  issn={0363-0129},
  journal={SIAM Journal on Control and Optimization},
  pages={1392--1407},
  author={Kohlmann, Michael and Zhou, Xun Yu}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25845">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-16T08:35:40Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25845"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Zhou, Xun Yu</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dcterms:title>Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach</dcterms:title>
    <dc:contributor>Zhou, Xun Yu</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-16T08:35:40Z</dcterms:available>
    <dcterms:bibliographicCitation>SIAM journal on control and optimization ; 38 (2000), 5. - S. 1392-1407</dcterms:bibliographicCitation>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an it additional martingale term and an indefinite initial state. This paper attempts to explore the relationship between BSDEs and stochastic controls by interpreting BSDEs as some stochastic optimal control problems. More specifically, associated with a BSDE, a new stochastic control problem is introduced with the same dynamics but a definite given initial state. The martingale term in the original BSDE is regarded as the control, and the objective is to minimize the second moment of the difference between the terminal state and the terminal value given in the BSDE. This problem is solved in a closed form by the stochastic linear-quadratic (LQ) theory developed recently. The general result is then applied to the Black--Scholes model, where an optimal mean-variance hedging portfolio is obtained explicitly in terms of the option price. Finally, a modified model is investigated, where the difference between the state and the expectation of the given terminal value at any time is taken into account.</dcterms:abstract>
    <dcterms:issued>2000</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen