Publikation:

Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2000

Autor:innen

Zhou, Xun Yu

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Control and Optimization. 2000, 38(5), pp. 1392-1407. ISSN 0363-0129. eISSN 1095-7138. Available under: doi: 10.1137/S036301299834973X

Zusammenfassung

It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an it additional martingale term and an indefinite initial state. This paper attempts to explore the relationship between BSDEs and stochastic controls by interpreting BSDEs as some stochastic optimal control problems. More specifically, associated with a BSDE, a new stochastic control problem is introduced with the same dynamics but a definite given initial state. The martingale term in the original BSDE is regarded as the control, and the objective is to minimize the second moment of the difference between the terminal state and the terminal value given in the BSDE. This problem is solved in a closed form by the stochastic linear-quadratic (LQ) theory developed recently. The general result is then applied to the Black--Scholes model, where an optimal mean-variance hedging portfolio is obtained explicitly in terms of the option price. Finally, a modified model is investigated, where the difference between the state and the expectation of the given terminal value at any time is taken into account.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690KOHLMANN, Michael, Xun Yu ZHOU, 2000. Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach. In: SIAM Journal on Control and Optimization. 2000, 38(5), pp. 1392-1407. ISSN 0363-0129. eISSN 1095-7138. Available under: doi: 10.1137/S036301299834973X
BibTex
@article{Kohlmann2000Relat-25845,
  year={2000},
  doi={10.1137/S036301299834973X},
  title={Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach},
  number={5},
  volume={38},
  issn={0363-0129},
  journal={SIAM Journal on Control and Optimization},
  pages={1392--1407},
  author={Kohlmann, Michael and Zhou, Xun Yu}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25845">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-16T08:35:40Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25845"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Zhou, Xun Yu</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dcterms:title>Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach</dcterms:title>
    <dc:contributor>Zhou, Xun Yu</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-16T08:35:40Z</dcterms:available>
    <dcterms:bibliographicCitation>SIAM journal on control and optimization ; 38 (2000), 5. - S. 1392-1407</dcterms:bibliographicCitation>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an it additional martingale term and an indefinite initial state. This paper attempts to explore the relationship between BSDEs and stochastic controls by interpreting BSDEs as some stochastic optimal control problems. More specifically, associated with a BSDE, a new stochastic control problem is introduced with the same dynamics but a definite given initial state. The martingale term in the original BSDE is regarded as the control, and the objective is to minimize the second moment of the difference between the terminal state and the terminal value given in the BSDE. This problem is solved in a closed form by the stochastic linear-quadratic (LQ) theory developed recently. The general result is then applied to the Black--Scholes model, where an optimal mean-variance hedging portfolio is obtained explicitly in terms of the option price. Finally, a modified model is investigated, where the difference between the state and the expectation of the given terminal value at any time is taken into account.</dcterms:abstract>
    <dcterms:issued>2000</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen