Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2011
Autor:innen
Hu, Shiyan
Coupé, Pierrick
Collins, D. Louis
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
NeuroImage. 2011, 58(2), pp. 549-559. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2011.06.054
Zusammenfassung

A new automatic model-based segmentation scheme that combines level set shape modeling and active appearance modeling (AAM) is presented. Since different MR image contrasts can yield complementary information, multi-contrast images can be incorporated into the active appearance modeling to improve segmentation performance. During active appearance modeling, the weighting of each contrast is optimized to account for the potentially varying contribution of each image while optimizing the model parameters that correspond to the shape and appearance eigen-images in order to minimize the difference between the multi-contrast test images and the ones synthesized from the shape and appearance modeling. As appearance-based modeling techniques are dependent on the initial alignment of training data, we compare (i) linear alignment of whole brain, (ii) linear alignment of a local volume of interest and (iii) non-linear alignment of a local volume of interest. The proposed segmentation scheme can be used to segment human hippocampi (HC) and amygdalae (AG), which have weak intensity contrast with their background in MRI. The experiments demonstrate that non-linear alignment of training data yields the best results and that multimodal segmentation using T1-weighted, T2-weighted and proton density-weighted images yields better segmentation results than any single contrast. In a four-fold cross validation with eighty young normal subjects, the method yields a mean Dice к of 0.87 with intraclass correlation coefficient (ICC) of 0.946 for HC and a mean Dice к of 0.81 with ICC of 0.924 for AG between manual and automatic labels.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HU, Shiyan, Pierrick COUPÉ, Jens C. PRUESSNER, D. Louis COLLINS, 2011. Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging. In: NeuroImage. 2011, 58(2), pp. 549-559. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2011.06.054
BibTex
@article{Hu2011-09Appea-38403,
  year={2011},
  doi={10.1016/j.neuroimage.2011.06.054},
  title={Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging},
  number={2},
  volume={58},
  issn={1053-8119},
  journal={NeuroImage},
  pages={549--559},
  author={Hu, Shiyan and Coupé, Pierrick and Pruessner, Jens C. and Collins, D. Louis}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38403">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Pruessner, Jens C.</dc:contributor>
    <dcterms:title>Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Pruessner, Jens C.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-07T07:57:25Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">A new automatic model-based segmentation scheme that combines level set shape modeling and active appearance modeling (AAM) is presented. Since different MR image contrasts can yield complementary information, multi-contrast images can be incorporated into the active appearance modeling to improve segmentation performance. During active appearance modeling, the weighting of each contrast is optimized to account for the potentially varying contribution of each image while optimizing the model parameters that correspond to the shape and appearance eigen-images in order to minimize the difference between the multi-contrast test images and the ones synthesized from the shape and appearance modeling. As appearance-based modeling techniques are dependent on the initial alignment of training data, we compare (i) linear alignment of whole brain, (ii) linear alignment of a local volume of interest and (iii) non-linear alignment of a local volume of interest. The proposed segmentation scheme can be used to segment human hippocampi (HC) and amygdalae (AG), which have weak intensity contrast with their background in MRI. The experiments demonstrate that non-linear alignment of training data yields the best results and that multimodal segmentation using T1-weighted, T2-weighted and proton density-weighted images yields better segmentation results than any single contrast. In a four-fold cross validation with eighty young normal subjects, the method yields a mean Dice к of 0.87 with intraclass correlation coefficient (ICC) of 0.946 for HC and a mean Dice к of 0.81 with ICC of 0.924 for AG between manual and automatic labels.</dcterms:abstract>
    <dcterms:issued>2011-09</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38403"/>
    <dc:contributor>Hu, Shiyan</dc:contributor>
    <dc:contributor>Coupé, Pierrick</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Collins, D. Louis</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:language>eng</dc:language>
    <dc:creator>Coupé, Pierrick</dc:creator>
    <dc:creator>Hu, Shiyan</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-07T07:57:25Z</dc:date>
    <dc:creator>Collins, D. Louis</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen