Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition

Loading...
Thumbnail Image
Date
2020
Authors
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Sensors ; 20 (2020), 5. - 1308. - MDPI. - eISSN 1424-8220
Abstract
Image quality is a key issue affecting the performance of biometric systems. Ensuring the quality of iris images acquired in unconstrained imaging conditions in visible light poses many challenges to iris recognition systems. Poor-quality iris images increase the false rejection rate and decrease the performance of the systems by quality filtering. Methods that can accurately predict iris image quality can improve the efficiency of quality-control protocols in iris recognition systems. We propose a fast blind/no-reference metric for predicting iris image quality. The proposed metric is based on statistical features of the sign and the magnitude of local image intensities. The experiments, conducted with a reference iris recognition system and three datasets of iris images acquired in visible light, showed that the quality of iris images strongly affects the recognition performance and is highly correlated with the iris matching scores. Rejecting poor-quality iris images improved the performance of the iris recognition system. In addition, we analyzed the effect of iris image quality on the accuracy of the iris segmentation module in the iris recognition system.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
biometric recognition; visible light iris images; image quality assessment; image covariates; quality filtering
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690JENADELEH, Mohsen, Marius PEDERSEN, Dietmar SAUPE, 2020. Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition. In: Sensors. MDPI. 20(5), 1308. eISSN 1424-8220. Available under: doi: 10.3390/s20051308
BibTex
@article{Jenadeleh2020-03Blind-48919,
  year={2020},
  doi={10.3390/s20051308},
  title={Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition},
  number={5},
  volume={20},
  journal={Sensors},
  author={Jenadeleh, Mohsen and Pedersen, Marius and Saupe, Dietmar},
  note={Article Number: 1308}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48919">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48919/1/Jenadeleh_2-lyzex08wpkja6.pdf"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-04T07:51:40Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48919/1/Jenadeleh_2-lyzex08wpkja6.pdf"/>
    <dc:creator>Pedersen, Marius</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-04T07:51:40Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Jenadeleh, Mohsen</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2020-03</dcterms:issued>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48919"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition</dcterms:title>
    <dc:creator>Jenadeleh, Mohsen</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Pedersen, Marius</dc:contributor>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:abstract xml:lang="eng">Image quality is a key issue affecting the performance of biometric systems. Ensuring the quality of iris images acquired in unconstrained imaging conditions in visible light poses many challenges to iris recognition systems. Poor-quality iris images increase the false rejection rate and decrease the performance of the systems by quality filtering. Methods that can accurately predict iris image quality can improve the efficiency of quality-control protocols in iris recognition systems. We propose a fast blind/no-reference metric for predicting iris image quality. The proposed metric is based on statistical features of the sign and the magnitude of local image intensities. The experiments, conducted with a reference iris recognition system and three datasets of iris images acquired in visible light, showed that the quality of iris images strongly affects the recognition performance and is highly correlated with the iris matching scores. Rejecting poor-quality iris images improved the performance of the iris recognition system. In addition, we analyzed the effect of iris image quality on the accuracy of the iris segmentation module in the iris recognition system.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes