Publikation:

A Modular Social Sensing System for Personalized Orienteering in the COVID-19 Era

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Autor:innen

Pilato, Giovanni
Persia, Fabio
Ge, Mouzhi
D'Auria, Daniela

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): CH 2464/1

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Management Information Systems. Association for Computing Machinery (ACM). 2023, 14(4), 31. ISSN 2158-656X. eISSN 2158-6578. Available under: doi: 10.1145/3615359

Zusammenfassung

Orienteering or itinerary planning algorithms in tourism are used to optimize travel routes by considering user preference and other constraints, such as time budget or traffic conditions. For these algorithms, it is essential to explore the user preference to predict potential points of interest (POIs) or tourist routes. However, nowadays, user preference has been significantly affected by COVID-19, since health concern plays a key tradeoff role. For example, people may try to avoid crowdedness, even if there is a strong desire for social interaction. Thus, the orienteering or itinerary planning algorithms should optimize routes beyond user preference. Therefore, this article proposes a social sensing system that considers the tradeoff between user preference and various factors, such as crowdedness, personality, knowledge of COVID-19, POI features, and desire for socialization. The experiments are conducted on profiling user interests with a properly trained fastText neural network and a set of specialized Naïve Bayesian Classifiers based on the “Yelp!” dataset. Also, we demonstrate how to approach and integrate COVID-related factors via conversational agents. Furthermore, the proposed system is in a modular design and evaluated in a user study; thus, it can be efficiently adapted to different algorithms for COVID-19-aware itinerary planning.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

COVID-19, orienteering, social sensing, personalization, itinerary planning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690PILATO, Giovanni, Fabio PERSIA, Mouzhi GE, Theodoros CHONDROGIANNIS, Daniela D'AURIA, 2023. A Modular Social Sensing System for Personalized Orienteering in the COVID-19 Era. In: ACM Transactions on Management Information Systems. Association for Computing Machinery (ACM). 2023, 14(4), 31. ISSN 2158-656X. eISSN 2158-6578. Available under: doi: 10.1145/3615359
BibTex
@article{Pilato2023Modul-68320,
  year={2023},
  doi={10.1145/3615359},
  title={A Modular Social Sensing System for Personalized Orienteering in the COVID-19 Era},
  number={4},
  volume={14},
  issn={2158-656X},
  journal={ACM Transactions on Management Information Systems},
  author={Pilato, Giovanni and Persia, Fabio and Ge, Mouzhi and Chondrogiannis, Theodoros and D'Auria, Daniela},
  note={Article Number: 31}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68320">
    <dc:creator>Persia, Fabio</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-21T09:47:01Z</dc:date>
    <dc:creator>Chondrogiannis, Theodoros</dc:creator>
    <dc:contributor>Ge, Mouzhi</dc:contributor>
    <dcterms:title>A Modular Social Sensing System for Personalized Orienteering in the COVID-19 Era</dcterms:title>
    <dcterms:abstract>Orienteering or itinerary planning algorithms in tourism are used to optimize travel routes by considering user preference and other constraints, such as time budget or traffic conditions. For these algorithms, it is essential to explore the user preference to predict potential points of interest (POIs) or tourist routes. However, nowadays, user preference has been significantly affected by COVID-19, since health concern plays a key tradeoff role. For example, people may try to avoid crowdedness, even if there is a strong desire for social interaction. Thus, the orienteering or itinerary planning algorithms should optimize routes beyond user preference. Therefore, this article proposes a social sensing system that considers the tradeoff between user preference and various factors, such as crowdedness, personality, knowledge of COVID-19, POI features, and desire for socialization. The experiments are conducted on profiling user interests with a properly trained fastText neural network and a set of specialized Naïve Bayesian Classifiers based on the “Yelp!” dataset. Also, we demonstrate how to approach and integrate COVID-related factors via conversational agents. Furthermore, the proposed system is in a modular design and evaluated in a user study; thus, it can be efficiently adapted to different algorithms for COVID-19-aware itinerary planning.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2023</dcterms:issued>
    <dc:creator>D'Auria, Daniela</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-21T09:47:01Z</dcterms:available>
    <dc:creator>Pilato, Giovanni</dc:creator>
    <dc:creator>Ge, Mouzhi</dc:creator>
    <dc:contributor>Chondrogiannis, Theodoros</dc:contributor>
    <dc:contributor>D'Auria, Daniela</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68320"/>
    <dc:contributor>Persia, Fabio</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Pilato, Giovanni</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen