Improving Unsupervised Label Propagation for Pose Tracking and Video Object Segmentation

Lade...
Vorschaubild
Dateien
Waldmann_2-mn1vmh1ak0gf4.pdf
Waldmann_2-mn1vmh1ak0gf4.pdfGröße: 346.38 KBDownloads: 15
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
ANDRES, Björn, ed. and others. Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings. Cham: Springer, 2022, pp. 230-245. Lecture Notes in Computer Science. 13485. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-16787-4. Available under: doi: 10.1007/978-3-031-16788-1_15
Zusammenfassung

Label propagation is a challenging task in computer vision with many applications. One approach is to learn representations of visual correspondence. In this paper, we study recent works on label propagation based on correspondence, carefully evaluate the effect of various aspects of their implementation, and improve upon various details. Our pipeline assembled from these best practices outperforms the previous state of the art in terms of PCK0.1 on the JHMDB dataset by 6.5%. We also propose a novel joint framework for tracking and keypoint propagation, which in contrast to the core pipeline is applicable to tracking small objects and obtains results that substantially exceed the performance of the core pipeline. Finally, for VOS, we extend the core pipeline to a fully unsupervised one by initializing the first frame with the self-attention layer from DINO. Our pipeline for VOS runs online and can handle static objects. It outperforms unsupervised frameworks with these characteristics.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
4th DAGM German Conference on Pattern Recognition (DAGM GCPR 2022), 27. Sep. 2022 - 30. Sep. 2022, Konstanz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690WALDMANN, Urs, Jannik BAMBERGER, Ole JOHANNSEN, Oliver DEUSSEN, Bastian GOLDLÜCKE, 2022. Improving Unsupervised Label Propagation for Pose Tracking and Video Object Segmentation. 4th DAGM German Conference on Pattern Recognition (DAGM GCPR 2022). Konstanz, 27. Sep. 2022 - 30. Sep. 2022. In: ANDRES, Björn, ed. and others. Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings. Cham: Springer, 2022, pp. 230-245. Lecture Notes in Computer Science. 13485. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-16787-4. Available under: doi: 10.1007/978-3-031-16788-1_15
BibTex
@inproceedings{Waldmann2022Impro-58701,
  year={2022},
  doi={10.1007/978-3-031-16788-1_15},
  title={Improving Unsupervised Label Propagation for Pose Tracking and Video Object Segmentation},
  number={13485},
  isbn={978-3-031-16787-4},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings},
  pages={230--245},
  editor={Andres, Björn},
  author={Waldmann, Urs and Bamberger, Jannik and Johannsen, Ole and Deussen, Oliver and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58701">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58701"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:26:00Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58701/1/Waldmann_2-mn1vmh1ak0gf4.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58701/1/Waldmann_2-mn1vmh1ak0gf4.pdf"/>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dc:contributor>Waldmann, Urs</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:abstract xml:lang="eng">Label propagation is a challenging task in computer vision with many applications. One approach is to learn representations of visual correspondence. In this paper, we study recent works on label propagation based on correspondence, carefully evaluate the effect of various aspects of their implementation, and improve upon various details. Our pipeline assembled from these best practices outperforms the previous state of the art in terms of PCK&lt;sub&gt;0.1&lt;/sub&gt; on the JHMDB dataset by 6.5%. We also propose a novel joint framework for tracking and keypoint propagation, which in contrast to the core pipeline is applicable to tracking small objects and obtains results that substantially exceed the performance of the core pipeline. Finally, for VOS, we extend the core pipeline to a fully unsupervised one by initializing the first frame with the self-attention layer from DINO. Our pipeline for VOS runs online and can handle static objects. It outperforms unsupervised frameworks with these characteristics.</dcterms:abstract>
    <dc:contributor>Bamberger, Jannik</dc:contributor>
    <dcterms:title>Improving Unsupervised Label Propagation for Pose Tracking and Video Object Segmentation</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Bamberger, Jannik</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:26:00Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Johannsen, Ole</dc:creator>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Waldmann, Urs</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen