Improving Unsupervised Label Propagation for Pose Tracking and Video Object Segmentation

Loading...
Thumbnail Image
Date
2022
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
September 30, 2023
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings / Andres, Björn et al. (ed.). - Cham : Springer, 2022. - (Lecture Notes in Computer Science ; 13485). - pp. 230-245. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-031-16787-4
Abstract
Label propagation is a challenging task in computer vision with many applications. One approach is to learn representations of visual correspondence. In this paper, we study recent works on label propagation based on correspondence, carefully evaluate the effect of various aspects of their implementation, and improve upon various details. Our pipeline assembled from these best practices outperforms the previous state of the art in terms of PCK0.1 on the JHMDB dataset by 6.5%. We also propose a novel joint framework for tracking and keypoint propagation, which in contrast to the core pipeline is applicable to tracking small objects and obtains results that substantially exceed the performance of the core pipeline. Finally, for VOS, we extend the core pipeline to a fully unsupervised one by initializing the first frame with the self-attention layer from DINO. Our pipeline for VOS runs online and can handle static objects. It outperforms unsupervised frameworks with these characteristics.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
4th DAGM German Conference on Pattern Recognition (DAGM GCPR 2022), Sep 27, 2022 - Sep 30, 2022, Konstanz
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690WALDMANN, Urs, Jannik BAMBERGER, Ole JOHANNSEN, Oliver DEUSSEN, Bastian GOLDLÜCKE, 2022. Improving Unsupervised Label Propagation for Pose Tracking and Video Object Segmentation. 4th DAGM German Conference on Pattern Recognition (DAGM GCPR 2022). Konstanz, Sep 27, 2022 - Sep 30, 2022. In: ANDRES, Björn, ed. and others. Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings. Cham:Springer, pp. 230-245. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-16787-4. Available under: doi: 10.1007/978-3-031-16788-1_15
BibTex
@inproceedings{Waldmann2022Impro-58701,
  year={2022},
  doi={10.1007/978-3-031-16788-1_15},
  title={Improving Unsupervised Label Propagation for Pose Tracking and Video Object Segmentation},
  number={13485},
  isbn={978-3-031-16787-4},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings},
  pages={230--245},
  editor={Andres, Björn},
  author={Waldmann, Urs and Bamberger, Jannik and Johannsen, Ole and Deussen, Oliver and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58701">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58701"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:26:00Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dc:contributor>Waldmann, Urs</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:abstract xml:lang="eng">Label propagation is a challenging task in computer vision with many applications. One approach is to learn representations of visual correspondence. In this paper, we study recent works on label propagation based on correspondence, carefully evaluate the effect of various aspects of their implementation, and improve upon various details. Our pipeline assembled from these best practices outperforms the previous state of the art in terms of PCK&lt;sub&gt;0.1&lt;/sub&gt; on the JHMDB dataset by 6.5%. We also propose a novel joint framework for tracking and keypoint propagation, which in contrast to the core pipeline is applicable to tracking small objects and obtains results that substantially exceed the performance of the core pipeline. Finally, for VOS, we extend the core pipeline to a fully unsupervised one by initializing the first frame with the self-attention layer from DINO. Our pipeline for VOS runs online and can handle static objects. It outperforms unsupervised frameworks with these characteristics.</dcterms:abstract>
    <dc:contributor>Bamberger, Jannik</dc:contributor>
    <dcterms:title>Improving Unsupervised Label Propagation for Pose Tracking and Video Object Segmentation</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Bamberger, Jannik</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:26:00Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Johannsen, Ole</dc:creator>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Waldmann, Urs</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed