Publikation:

Many Faces of Symmetric Edge Polytopes

Lade...
Vorschaubild

Dateien

D'Ali_2-nasw3w7ear1k9.PDF
D'Ali_2-nasw3w7ear1k9.PDFGröße: 1.13 MBDownloads: 67

Datum

2022

Autor:innen

D'Alì, Alessio
Delucchi, Emanuele

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Electronic Journal of Combinatorics. Herbert S. Wilf. 2022, 29(3), P3.24. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/10387

Zusammenfassung

Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690D'ALÌ, Alessio, Emanuele DELUCCHI, Mateusz MICHALEK, 2022. Many Faces of Symmetric Edge Polytopes. In: The Electronic Journal of Combinatorics. Herbert S. Wilf. 2022, 29(3), P3.24. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/10387
BibTex
@article{DAli2022Faces-58344,
  year={2022},
  doi={10.37236/10387},
  title={Many Faces of Symmetric Edge Polytopes},
  number={3},
  volume={29},
  issn={1097-1440},
  journal={The Electronic Journal of Combinatorics},
  author={D'Alì, Alessio and Delucchi, Emanuele and Michalek, Mateusz},
  note={Article Number: P3.24}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58344">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>D'Alì, Alessio</dc:contributor>
    <dc:creator>D'Alì, Alessio</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-19T09:42:50Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58344"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58344/1/D%27Ali_2-nasw3w7ear1k9.PDF"/>
    <dc:creator>Delucchi, Emanuele</dc:creator>
    <dc:contributor>Delucchi, Emanuele</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58344/1/D%27Ali_2-nasw3w7ear1k9.PDF"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Many Faces of Symmetric Edge Polytopes</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-19T09:42:50Z</dcterms:available>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:creator>Michalek, Mateusz</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen