Publikation: Morphological traits and machine learning for genetic lineage prediction of two reef-building corals
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Integrating multiple lines of evidence that support molecular taxonomy analysis has proven to be a robust method for species delimitation in scleractinian corals. However, morphology often conflicts with genetic approaches due to high phenotypic plasticity and convergence. Understanding morphological variation among species is crucial to studying coral distribution, life history, ecology, and evolution. Here, we present an application of Random Forest models for coral species identification based on morphological annotation of the corallum and corallites. We show that the integration of molecular and morphological trait analysis can be improved using machine learning. Morphological traits were documented for Porites and Pocillopora coral species that were collected and genotyped through genome-wide, genetical hierarchical clustering, and coalescence analyses for the Tara Pacific Expedition. While Porites only included three tentative species, most Pocillopora species were accounted by included specimens from the western Indian Ocean, tropical Southwestern Pacific, and southeast Polynesia. Two Random Forest models per genus were trained on the morphological annotations using the genetic lineage labels. One model was developed for in-situ image identification and used corallum traits measured from in-situ photographs. Another model for integrative species identification combined corallum and corallite data measured on scanning electron micrographs. Random Forest models outperformed traditional dimension reduction methods like PCA and FAMD followed by k-means and hierarchical clustering by classifying the correct genetic lineage despite morphological clusters overlapping. This machine learning approach is reproducible, cost-effective, and accessible, reducing the need for taxonomic expertise. It can complement molecular and phylogenetic studies and support image identification, highlighting its potential to advance a coral integrative taxonomy workflow.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MITUSHASI, Guinther, Yuko F. KITANO, Nicolas OURY, Hélène MAGALON, David A. PAZ-GARCÍA, Eric ARMSTRONG, Benjamin C. C. HUME, Barbara PORRO, Christian R. VOOLSTRA, Sylvain AGOSTINI, 2025. Morphological traits and machine learning for genetic lineage prediction of two reef-building corals. In: PLOS One. Public Library of Science (PLoS). 2025, 20(6), e0326095. eISSN 1932-6203. Verfügbar unter: doi: 10.1371/journal.pone.0326095BibTex
@article{Mitushasi2025-06-18Morph-73658, title={Morphological traits and machine learning for genetic lineage prediction of two reef-building corals}, year={2025}, doi={10.1371/journal.pone.0326095}, number={6}, volume={20}, journal={PLOS One}, author={Mitushasi, Guinther and Kitano, Yuko F. and Oury, Nicolas and Magalon, Hélène and Paz-García, David A. and Armstrong, Eric and Hume, Benjamin C. C. and Porro, Barbara and Voolstra, Christian R. and Agostini, Sylvain}, note={Article Number: e0326095} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73658"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73658/1/Mitushasi_2-nrj2aejxk9iu2.pdf"/> <dc:creator>Kitano, Yuko F.</dc:creator> <dc:creator>Oury, Nicolas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73658"/> <dc:contributor>Agostini, Sylvain</dc:contributor> <dc:contributor>Kitano, Yuko F.</dc:contributor> <dc:contributor>Hume, Benjamin C. C.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Porro, Barbara</dc:contributor> <dc:contributor>Mitushasi, Guinther</dc:contributor> <dc:contributor>Armstrong, Eric</dc:contributor> <dcterms:abstract>Integrating multiple lines of evidence that support molecular taxonomy analysis has proven to be a robust method for species delimitation in scleractinian corals. However, morphology often conflicts with genetic approaches due to high phenotypic plasticity and convergence. Understanding morphological variation among species is crucial to studying coral distribution, life history, ecology, and evolution. Here, we present an application of Random Forest models for coral species identification based on morphological annotation of the corallum and corallites. We show that the integration of molecular and morphological trait analysis can be improved using machine learning. Morphological traits were documented for Porites and Pocillopora coral species that were collected and genotyped through genome-wide, genetical hierarchical clustering, and coalescence analyses for the Tara Pacific Expedition. While Porites only included three tentative species, most Pocillopora species were accounted by included specimens from the western Indian Ocean, tropical Southwestern Pacific, and southeast Polynesia. Two Random Forest models per genus were trained on the morphological annotations using the genetic lineage labels. One model was developed for in-situ image identification and used corallum traits measured from in-situ photographs. Another model for integrative species identification combined corallum and corallite data measured on scanning electron micrographs. Random Forest models outperformed traditional dimension reduction methods like PCA and FAMD followed by k-means and hierarchical clustering by classifying the correct genetic lineage despite morphological clusters overlapping. This machine learning approach is reproducible, cost-effective, and accessible, reducing the need for taxonomic expertise. It can complement molecular and phylogenetic studies and support image identification, highlighting its potential to advance a coral integrative taxonomy workflow.</dcterms:abstract> <dcterms:issued>2025-06-18</dcterms:issued> <dc:contributor>Oury, Nicolas</dc:contributor> <dcterms:title>Morphological traits and machine learning for genetic lineage prediction of two reef-building corals</dcterms:title> <dc:creator>Voolstra, Christian R.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73658/1/Mitushasi_2-nrj2aejxk9iu2.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Paz-García, David A.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-23T12:46:28Z</dc:date> <dc:creator>Porro, Barbara</dc:creator> <dc:creator>Agostini, Sylvain</dc:creator> <dc:contributor>Paz-García, David A.</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Hume, Benjamin C. C.</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Magalon, Hélène</dc:contributor> <dc:contributor>Voolstra, Christian R.</dc:contributor> <dc:creator>Armstrong, Eric</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-23T12:46:28Z</dcterms:available> <dc:creator>Mitushasi, Guinther</dc:creator> <dc:creator>Magalon, Hélène</dc:creator> </rdf:Description> </rdf:RDF>