Automatic Image Checkpoint Selection for Guider-Follower Pedestrian Navigation

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Fu, Hongbo
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Computer Graphics Forum. Wiley. 2021, 40(1), pp. 357-368. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14192
Zusammenfassung

In recent years guider‐follower approaches show a promising solution to the challenging problem of last‐mile or indoor pedestrian navigation without micro‐maps or indoor floor plans for path planning. However, the success of such guider‐follower approaches is highly dependent on a set of manually and carefully chosen image or video checkpoints. This selection process is tedious and error‐prone. To address this issue, we first conduct a pilot study to understand how users as guiders select critical checkpoints from a video recorded while walking along a route, leading to a set of criteria for automatic checkpoint selection. By using these criteria, including visibility, stairs and clearness, we then implement this automation process. The key behind our technique is a lightweight, effective algorithm using left‐hand‐side and right‐hand‐side objects for path occlusion detection, which benefits both automatic checkpoint selection and occlusion‐aware path annotation on selected image checkpoints. Our experimental results show that our automatic checkpoint selection method works well in different navigation scenarios. The quality of automatically selected checkpoints is comparable to that of manually selected ones and higher than that of checkpoints by alternative automatic methods.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KWAN, Kin Chung, Hongbo FU, 2021. Automatic Image Checkpoint Selection for Guider-Follower Pedestrian Navigation. In: Computer Graphics Forum. Wiley. 2021, 40(1), pp. 357-368. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14192
BibTex
@article{Kwan2021Autom-52572,
  year={2021},
  doi={10.1111/cgf.14192},
  title={Automatic Image Checkpoint Selection for Guider-Follower Pedestrian Navigation},
  number={1},
  volume={40},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={357--368},
  author={Kwan, Kin Chung and Fu, Hongbo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52572">
    <dc:contributor>Kwan, Kin Chung</dc:contributor>
    <dc:contributor>Fu, Hongbo</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Fu, Hongbo</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-27T07:49:18Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Kwan, Kin Chung</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-27T07:49:18Z</dc:date>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:abstract xml:lang="eng">In recent years guider‐follower approaches show a promising solution to the challenging problem of last‐mile or indoor pedestrian navigation without micro‐maps or indoor floor plans for path planning. However, the success of such guider‐follower approaches is highly dependent on a set of manually and carefully chosen image or video checkpoints. This selection process is tedious and error‐prone. To address this issue, we first conduct a pilot study to understand how users as guiders select critical checkpoints from a video recorded while walking along a route, leading to a set of criteria for automatic checkpoint selection. By using these criteria, including visibility, stairs and clearness, we then implement this automation process. The key behind our technique is a lightweight, effective algorithm using left‐hand‐side and right‐hand‐side objects for path occlusion detection, which benefits both automatic checkpoint selection and occlusion‐aware path annotation on selected image checkpoints. Our experimental results show that our automatic checkpoint selection method works well in different navigation scenarios. The quality of automatically selected checkpoints is comparable to that of manually selected ones and higher than that of checkpoints by alternative automatic methods.</dcterms:abstract>
    <dcterms:title>Automatic Image Checkpoint Selection for Guider-Follower Pedestrian Navigation</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52572"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen