Frame constructions, truth invariance and validity preservation in many-valued modal logic
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we define and examine frame constructions for the family of manyvalued modal logics introduced by M. Fitting in the '90s. Every language of this family is built on an underlying space of truth values, a Heyting algebra H. We generalize Fitting's original work by considering complete Heyting algebras as truth spaces and proceed to define a suitable notion of H-indexed families of generated subframes, disjoint unions and bounded morphisms. Then, we provide an algebraic generalization of the canonical extension of a frame and model, and prove a preservation result inspired from Fitting's canonical model argument in [FIT 92a]. The analog of a complex algebra and of a principal ultrafilter is defined and the embedding of a frame into its canonical extension is presented.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ELEFTHERIOU, Pantelis E., Costas D. KOUTRAS, 2012. Frame constructions, truth invariance and validity preservation in many-valued modal logic. In: Journal of Applied Non-Classical Logics. Taylor & Francis. 2012, 15(4), pp. 367-388. ISSN 1166-3081. eISSN 1958-5780. Available under: doi: 10.3166/jancl.15.367-388BibTex
@article{Eleftheriou2012-04-13Frame-49484, year={2012}, doi={10.3166/jancl.15.367-388}, title={Frame constructions, truth invariance and validity preservation in many-valued modal logic}, number={4}, volume={15}, issn={1166-3081}, journal={Journal of Applied Non-Classical Logics}, pages={367--388}, author={Eleftheriou, Pantelis E. and Koutras, Costas D.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49484"> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-12T16:07:22Z</dcterms:available> <dc:contributor>Koutras, Costas D.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49484"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-12T16:07:22Z</dc:date> <dcterms:title>Frame constructions, truth invariance and validity preservation in many-valued modal logic</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Eleftheriou, Pantelis E.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Eleftheriou, Pantelis E.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2012-04-13</dcterms:issued> <dc:creator>Koutras, Costas D.</dc:creator> <dcterms:abstract xml:lang="eng">In this paper we define and examine frame constructions for the family of manyvalued modal logics introduced by M. Fitting in the '90s. Every language of this family is built on an underlying space of truth values, a Heyting algebra H. We generalize Fitting's original work by considering complete Heyting algebras as truth spaces and proceed to define a suitable notion of H-indexed families of generated subframes, disjoint unions and bounded morphisms. Then, we provide an algebraic generalization of the canonical extension of a frame and model, and prove a preservation result inspired from Fitting's canonical model argument in [FIT 92a]. The analog of a complex algebra and of a principal ultrafilter is defined and the embedding of a frame into its canonical extension is presented.</dcterms:abstract> </rdf:Description> </rdf:RDF>