MotionGlyphs : Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior

Lade...
Vorschaubild
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Computer Graphics Forum ; 39 (2020), 3. - S. 63-75. - Wiley. - ISSN 0167-7055. - eISSN 1467-8659
Zusammenfassung
Domain experts for collective animal behavior analyze relationships between single animal movers and groups of animalsover time and space to detect emergent group properties. A common way to interpret this type of data is to visualize it as aspatio-temporal network. Collective behavior data sets are often large, and may hence result in dense and highly connectednode-link diagrams, resulting in issues of node-overlap and edge clutter. In this design study, in an iterative design process, wedeveloped glyphs as a design for seamlessly encoding relationships and movement characteristics of a single mover or clustersof movers. Based on these glyph designs, we developed a visual exploration prototype, MotionGlyphs, that supports domainexperts in interactively filtering, clustering, and animating spatio-temporal networks for collective animal behavior analysis. Bymeans of an expert evaluation, we show how MotionGlyphs supports important tasks and analysis goals of our domain experts,and we give evidence of the usefulness for analyzing spatio-temporal networks of collective animal behavior.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690CAKMAK, Eren, Hanna SCHÄFER, Juri F. BUCHMÜLLER, Johannes FUCHS, Tobias SCHRECK, Alex JORDAN, Daniel A. KEIM, 2020. MotionGlyphs : Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior. In: Computer Graphics Forum. Wiley. 39(3), pp. 63-75. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13963
BibTex
@article{Cakmak2020Motio-49404,
  year={2020},
  doi={10.1111/cgf.13963},
  title={MotionGlyphs : Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior},
  number={3},
  volume={39},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={63--75},
  author={Cakmak, Eren and Schäfer, Hanna and Buchmüller, Juri F. and Fuchs, Johannes and Schreck, Tobias and Jordan, Alex and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49404">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Fuchs, Johannes</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>MotionGlyphs : Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dc:contributor>Fuchs, Johannes</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-06T13:28:32Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-06T13:28:32Z</dc:date>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dc:contributor>Jordan, Alex</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49404/1/Cakmak_2-pe0v1ma2agax4.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49404"/>
    <dcterms:abstract xml:lang="eng">Domain experts for collective animal behavior analyze relationships between single animal movers and groups of animalsover time and space to detect emergent group properties. A common way to interpret this type of data is to visualize it as aspatio-temporal network. Collective behavior data sets are often large, and may hence result in dense and highly connectednode-link diagrams, resulting in issues of node-overlap and edge clutter. In this design study, in an iterative design process, wedeveloped glyphs as a design for seamlessly encoding relationships and movement characteristics of a single mover or clustersof movers. Based on these glyph designs, we developed a visual exploration prototype, MotionGlyphs, that supports domainexperts in interactively filtering, clustering, and animating spatio-temporal networks for collective animal behavior analysis. Bymeans of an expert evaluation, we show how MotionGlyphs supports important tasks and analysis goals of our domain experts,and we give evidence of the usefulness for analyzing spatio-temporal networks of collective animal behavior.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49404/1/Cakmak_2-pe0v1ma2agax4.pdf"/>
    <dc:creator>Jordan, Alex</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Schäfer, Hanna</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Schäfer, Hanna</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Buchmüller, Juri F.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Buchmüller, Juri F.</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja