MotionGlyphs : Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Domain experts for collective animal behavior analyze relationships between single animal movers and groups of animalsover time and space to detect emergent group properties. A common way to interpret this type of data is to visualize it as aspatio-temporal network. Collective behavior data sets are often large, and may hence result in dense and highly connectednode-link diagrams, resulting in issues of node-overlap and edge clutter. In this design study, in an iterative design process, wedeveloped glyphs as a design for seamlessly encoding relationships and movement characteristics of a single mover or clustersof movers. Based on these glyph designs, we developed a visual exploration prototype, MotionGlyphs, that supports domainexperts in interactively filtering, clustering, and animating spatio-temporal networks for collective animal behavior analysis. Bymeans of an expert evaluation, we show how MotionGlyphs supports important tasks and analysis goals of our domain experts,and we give evidence of the usefulness for analyzing spatio-temporal networks of collective animal behavior.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CAKMAK, Eren, Hanna SCHÄFER, Juri F. BUCHMÜLLER, Johannes FUCHS, Tobias SCHRECK, Alex JORDAN, Daniel A. KEIM, 2020. MotionGlyphs : Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior. In: Computer Graphics Forum. Wiley. 2020, 39(3), pp. 63-75. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13963BibTex
@article{Cakmak2020Motio-49404, year={2020}, doi={10.1111/cgf.13963}, title={MotionGlyphs : Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior}, number={3}, volume={39}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={63--75}, author={Cakmak, Eren and Schäfer, Hanna and Buchmüller, Juri F. and Fuchs, Johannes and Schreck, Tobias and Jordan, Alex and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49404"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Fuchs, Johannes</dc:creator> <dcterms:issued>2020</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>MotionGlyphs : Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Cakmak, Eren</dc:creator> <dc:contributor>Fuchs, Johannes</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-06T13:28:32Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-06T13:28:32Z</dc:date> <dc:contributor>Cakmak, Eren</dc:contributor> <dc:contributor>Jordan, Alex</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49404/1/Cakmak_2-pe0v1ma2agax4.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49404"/> <dcterms:abstract xml:lang="eng">Domain experts for collective animal behavior analyze relationships between single animal movers and groups of animalsover time and space to detect emergent group properties. A common way to interpret this type of data is to visualize it as aspatio-temporal network. Collective behavior data sets are often large, and may hence result in dense and highly connectednode-link diagrams, resulting in issues of node-overlap and edge clutter. In this design study, in an iterative design process, wedeveloped glyphs as a design for seamlessly encoding relationships and movement characteristics of a single mover or clustersof movers. Based on these glyph designs, we developed a visual exploration prototype, MotionGlyphs, that supports domainexperts in interactively filtering, clustering, and animating spatio-temporal networks for collective animal behavior analysis. Bymeans of an expert evaluation, we show how MotionGlyphs supports important tasks and analysis goals of our domain experts,and we give evidence of the usefulness for analyzing spatio-temporal networks of collective animal behavior.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49404/1/Cakmak_2-pe0v1ma2agax4.pdf"/> <dc:creator>Jordan, Alex</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Schäfer, Hanna</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Schäfer, Hanna</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Buchmüller, Juri F.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Buchmüller, Juri F.</dc:creator> </rdf:Description> </rdf:RDF>