Publikation:

Using Semantic Data Mining for Classification Improvement and Knowledge Extraction

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

DAMIART
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

SEIDL, Thomas, ed., Marwan HASSANI, ed., Christian BEECKS, ed.. Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, Aachen, Germany, September 8-10, 2014. CEUR-WS.org, 2014, pp. 150-155. CEUR Workshop Proceedings. 1226

Zusammenfassung

The objective of this position paper is to show that the inte- gration of semantic data mining into the DAMIART data mining system can help further improve classification performance and knowledge ex- traction. DAMIART performs multi-label classification in the presence of multiple class ontologies, hierarchy extraction from multi-labels and concept relation by association rule mining. Whereas DAMIART com- bines knowledge from multiple data sources and multiple class ontologies, the proposed extension should also explore available ontologies over at- tributes. This will allow the system to produce not only more accurate classification results but also improve their interpretability and overcome such problems as data sparseness.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Semantic Data Mining; Classification; Knowledge Extraction

Konferenz

KDML, 8. Sept. 2014 - 12. Sept. 2014, Aachen, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690BENITES, Fernando, Elena SAPOZHNIKOVA, 2014. Using Semantic Data Mining for Classification Improvement and Knowledge Extraction. KDML. Aachen, Germany, 8. Sept. 2014 - 12. Sept. 2014. In: SEIDL, Thomas, ed., Marwan HASSANI, ed., Christian BEECKS, ed.. Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, Aachen, Germany, September 8-10, 2014. CEUR-WS.org, 2014, pp. 150-155. CEUR Workshop Proceedings. 1226
BibTex
@inproceedings{Benites2014Using-29338,
  year={2014},
  title={Using Semantic Data Mining for Classification Improvement and Knowledge Extraction},
  number={1226},
  publisher={CEUR-WS.org},
  series={CEUR Workshop Proceedings},
  booktitle={Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, Aachen, Germany, September 8-10, 2014},
  pages={150--155},
  editor={Seidl, Thomas and Hassani, Marwan and Beecks, Christian},
  author={Benites, Fernando and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29338">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29338"/>
    <dcterms:abstract xml:lang="eng">The objective of this position paper is to show that the inte- gration of semantic data mining into the DAMIART data mining system can help further improve classification performance and knowledge ex- traction. DAMIART performs multi-label classification in the presence of multiple class ontologies, hierarchy extraction from multi-labels and concept relation by association rule mining. Whereas DAMIART com- bines knowledge from multiple data sources and multiple class ontologies, the proposed extension should also explore available ontologies over at- tributes. This will allow the system to produce not only more accurate classification results but also improve their interpretability and overcome such problems as data sparseness.</dcterms:abstract>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:title>Using Semantic Data Mining for Classification Improvement and Knowledge Extraction</dcterms:title>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T11:28:58Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T11:28:58Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Benites, Fernando</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen