Using Semantic Data Mining for Classification Improvement and Knowledge Extraction

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
DAMIART
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
SEIDL, Thomas, ed., Marwan HASSANI, ed., Christian BEECKS, ed.. Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, Aachen, Germany, September 8-10, 2014. CEUR-WS.org, 2014, pp. 150-155. CEUR Workshop Proceedings. 1226
Zusammenfassung

The objective of this position paper is to show that the inte- gration of semantic data mining into the DAMIART data mining system can help further improve classification performance and knowledge ex- traction. DAMIART performs multi-label classification in the presence of multiple class ontologies, hierarchy extraction from multi-labels and concept relation by association rule mining. Whereas DAMIART com- bines knowledge from multiple data sources and multiple class ontologies, the proposed extension should also explore available ontologies over at- tributes. This will allow the system to produce not only more accurate classification results but also improve their interpretability and overcome such problems as data sparseness.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Semantic Data Mining; Classification; Knowledge Extraction
Konferenz
KDML, 8. Sept. 2014 - 12. Sept. 2014, Aachen, Germany
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BENITES, Fernando, Elena SAPOZHNIKOVA, 2014. Using Semantic Data Mining for Classification Improvement and Knowledge Extraction. KDML. Aachen, Germany, 8. Sept. 2014 - 12. Sept. 2014. In: SEIDL, Thomas, ed., Marwan HASSANI, ed., Christian BEECKS, ed.. Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, Aachen, Germany, September 8-10, 2014. CEUR-WS.org, 2014, pp. 150-155. CEUR Workshop Proceedings. 1226
BibTex
@inproceedings{Benites2014Using-29338,
  year={2014},
  title={Using Semantic Data Mining for Classification Improvement and Knowledge Extraction},
  number={1226},
  publisher={CEUR-WS.org},
  series={CEUR Workshop Proceedings},
  booktitle={Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, Aachen, Germany, September 8-10, 2014},
  pages={150--155},
  editor={Seidl, Thomas and Hassani, Marwan and Beecks, Christian},
  author={Benites, Fernando and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29338">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29338"/>
    <dcterms:abstract xml:lang="eng">The objective of this position paper is to show that the inte- gration of semantic data mining into the DAMIART data mining system can help further improve classification performance and knowledge ex- traction. DAMIART performs multi-label classification in the presence of multiple class ontologies, hierarchy extraction from multi-labels and concept relation by association rule mining. Whereas DAMIART com- bines knowledge from multiple data sources and multiple class ontologies, the proposed extension should also explore available ontologies over at- tributes. This will allow the system to produce not only more accurate classification results but also improve their interpretability and overcome such problems as data sparseness.</dcterms:abstract>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:title>Using Semantic Data Mining for Classification Improvement and Knowledge Extraction</dcterms:title>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T11:28:58Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T11:28:58Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Benites, Fernando</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen