Publikation:

Estimating the Mean Direction of Strongly Dependent Circular Time Series

Lade...
Vorschaubild

Dateien

Beran_2-qn2sncvrlmh14.pdf
Beran_2-qn2sncvrlmh14.pdfGröße: 937.19 KBDownloads: 169

Datum

2020

Autor:innen

Ghosh, Sucharita

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Time Series Analysis. Wiley. 2020, 41(2), pp. 210-228. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/jtsa.12500

Zusammenfassung

A class of circular processes based on Gaussian subordination is introduced. This allows for flexible modelling of directional time series with long‐range dependence. Based on limit theorems for subordinated processes and consistent estimation of nuisance parameters, asymptotic confidence intervals for the mean direction are derived. Extensions to cases where the direction depends on explanatory variables are also considered. Simulations and a data example illustrate the proposed method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, Sucharita GHOSH, 2020. Estimating the Mean Direction of Strongly Dependent Circular Time Series. In: Journal of Time Series Analysis. Wiley. 2020, 41(2), pp. 210-228. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/jtsa.12500
BibTex
@article{Beran2020-03Estim-46788,
  year={2020},
  doi={10.1111/jtsa.12500},
  title={Estimating the Mean Direction of Strongly Dependent Circular Time Series},
  number={2},
  volume={41},
  issn={0143-9782},
  journal={Journal of Time Series Analysis},
  pages={210--228},
  author={Beran, Jan and Ghosh, Sucharita}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46788">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-04T12:14:20Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46788/1/Beran_2-qn2sncvrlmh14.pdf"/>
    <dcterms:issued>2020-03</dcterms:issued>
    <dcterms:abstract xml:lang="eng">A class of circular processes based on Gaussian subordination is introduced. This allows for flexible modelling of directional time series with long‐range dependence. Based on limit theorems for subordinated processes and consistent estimation of nuisance parameters, asymptotic confidence intervals for the mean direction are derived. Extensions to cases where the direction depends on explanatory variables are also considered. Simulations and a data example illustrate the proposed method.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-04T12:14:20Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46788"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46788/1/Beran_2-qn2sncvrlmh14.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:creator>Beran, Jan</dc:creator>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:title>Estimating the Mean Direction of Strongly Dependent Circular Time Series</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen