Estimating the Mean Direction of Strongly Dependent Circular Time Series

Lade...
Vorschaubild
Dateien
Beran_2-qn2sncvrlmh14.pdf
Beran_2-qn2sncvrlmh14.pdfGröße: 937.19 KBDownloads: 152
Datum
2020
Autor:innen
Ghosh, Sucharita
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Time Series Analysis. Wiley. 2020, 41(2), pp. 210-228. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/jtsa.12500
Zusammenfassung

A class of circular processes based on Gaussian subordination is introduced. This allows for flexible modelling of directional time series with long‐range dependence. Based on limit theorems for subordinated processes and consistent estimation of nuisance parameters, asymptotic confidence intervals for the mean direction are derived. Extensions to cases where the direction depends on explanatory variables are also considered. Simulations and a data example illustrate the proposed method.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BERAN, Jan, Sucharita GHOSH, 2020. Estimating the Mean Direction of Strongly Dependent Circular Time Series. In: Journal of Time Series Analysis. Wiley. 2020, 41(2), pp. 210-228. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/jtsa.12500
BibTex
@article{Beran2020-03Estim-46788,
  year={2020},
  doi={10.1111/jtsa.12500},
  title={Estimating the Mean Direction of Strongly Dependent Circular Time Series},
  number={2},
  volume={41},
  issn={0143-9782},
  journal={Journal of Time Series Analysis},
  pages={210--228},
  author={Beran, Jan and Ghosh, Sucharita}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46788">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-04T12:14:20Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46788/1/Beran_2-qn2sncvrlmh14.pdf"/>
    <dcterms:issued>2020-03</dcterms:issued>
    <dcterms:abstract xml:lang="eng">A class of circular processes based on Gaussian subordination is introduced. This allows for flexible modelling of directional time series with long‐range dependence. Based on limit theorems for subordinated processes and consistent estimation of nuisance parameters, asymptotic confidence intervals for the mean direction are derived. Extensions to cases where the direction depends on explanatory variables are also considered. Simulations and a data example illustrate the proposed method.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-04T12:14:20Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46788"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46788/1/Beran_2-qn2sncvrlmh14.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:creator>Beran, Jan</dc:creator>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:title>Estimating the Mean Direction of Strongly Dependent Circular Time Series</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja