Publikation: Error analysis for POD approximations of infinite horizon problems via the dynamic programming approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Zusammenfassung
In this paper infinite horizon optimal control problems for nonlinear high-dimensional dynamical systems are studied. Nonlinear feedback laws can be computed via the value function characterized as the unique viscosity solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation which stems from the dynamic programming approach. However, the bottleneck is mainly due to the curse of dimensionality and HJB equations are only solvable in a relatively small dimension. Therefore, a reduced-order model is derived for the dynamical system and for this purpose the method of proper orthogonal decomposition (POD) is used. The resulting errors in the HJB equations are estimated by an a-priori error analysis, which suggests a new sampling strategy for the POD method. Numerical experiments illustrates the theoretical findings.