Complex Logarithmic Views for Small Details in Large Contexts

Lade...
Vorschaubild
Datum
2006
Autor:innen
Böttger, Joachim
Balzer, Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Visualization and Computer Graphics. 2006, 12(5), pp. 845-852. Available under: doi: 10.1109/TVCG.2006.126
Zusammenfassung

Commonly known detail in context techniques for the two-dimensional Euclidean space enlarge details and shrink their context using mapping functions that introduce geometrical compression. This makes it difficult or even impossible to recognize shapes for large differences in magnification factors. In this paper we propose to use the complex logarithm and the complex root functions to show very small details even in very large contexts. These mappings are conformal, which means they only locally rotate and scale, thus keeping shapes intact and recognizable. They allow showing details that are orders of magnitude smaller than their surroundings in combination with their context in one seamless visualization. We address the utilization of this universal technique for the interaction with complex two-dimensional data considering the exploration of large graphs and other examples.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Detail in context, complex logarithm, conformal mappings, analytic functions, interaction
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BÖTTGER, Joachim, Michael BALZER, Oliver DEUSSEN, 2006. Complex Logarithmic Views for Small Details in Large Contexts. In: IEEE Transactions on Visualization and Computer Graphics. 2006, 12(5), pp. 845-852. Available under: doi: 10.1109/TVCG.2006.126
BibTex
@article{Bottger2006Compl-6377,
  year={2006},
  doi={10.1109/TVCG.2006.126},
  title={Complex Logarithmic Views for Small Details in Large Contexts},
  number={5},
  volume={12},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={845--852},
  author={Böttger, Joachim and Balzer, Michael and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6377">
    <dc:contributor>Böttger, Joachim</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:format>unknown</dc:format>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6377/1/Complex_Logarithmic_Views_for_Small_Details.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6377/1/Complex_Logarithmic_Views_for_Small_Details.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6377"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Commonly known detail in context techniques for the two-dimensional Euclidean space enlarge details and shrink their context using mapping functions that introduce geometrical compression. This makes it difficult or even impossible to recognize shapes for large differences in magnification factors. In this paper we propose to use the complex logarithm and the complex root functions to show very small details even in very large contexts. These mappings are conformal, which means they only locally rotate and scale, thus keeping shapes intact and recognizable. They allow showing details that are orders of magnitude smaller than their surroundings in combination with their context in one seamless visualization. We address the utilization of this universal technique for the interaction with complex two-dimensional data considering the exploration of large graphs and other examples.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:19Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Balzer, Michael</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Balzer, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:19Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6377/2/Complex_Logarithmic_Views_for_Small_Details_in_Large_Contexts.avi"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6377/2/Complex_Logarithmic_Views_for_Small_Details_in_Large_Contexts.avi"/>
    <dc:creator>Böttger, Joachim</dc:creator>
    <dcterms:issued>2006</dcterms:issued>
    <dcterms:bibliographicCitation>First publ. in: IEEE Transactions on Visualization and Computer Graphics 12 (2006), 5, pp. 845-852</dcterms:bibliographicCitation>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:title>Complex Logarithmic Views for Small Details in Large Contexts</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen