Publikation:

Analytical Workbench for Integrated Social Media Geo-Inference

Lade...
Vorschaubild

Dateien

Mahtal_2-rzgd1myf2nng1.pdf
Mahtal_2-rzgd1myf2nng1.pdfGröße: 745.66 KBDownloads: 194

Datum

2018

Autor:innen

Mahtal, Sanae
Lupu, Cristina
Armbruster, Benedikt
Bechtold, Marvin
Reichel, Maximilian
Wangler, Thomas
Thom, Dennis
Koch, Steffen
Ertl, Thomas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BURGHARDT, Dirk, ed., Siming CHEN, ed., Gennady ANDRIENKO, ed., Natalia ANDRIENKO, ed., Ross PURVES, ed., Alexandra DIEHL, ed.. VGI Geovisual Analytics Workshop. 2018

Zusammenfassung

In the realm of social media monitoring and analysis, the availability of location-based information is of pivotal importance to understand the spatial behavior of social media users. Especially in fields like disaster management and urban planning, such data holds huge value for analysts and decision makers alike. However, as only few posts and messages in platforms like Twitter are already provided with GPS-coordinates or geo-tags by the users, researchers have proposed various algorithmic and modeldriven means to infer this information from properties like the content, network, or geographic history of the users. Since many of these methods only focus on isolated features or specific models, this paper presents a comprehensive framework that allows to integrate, combine and compare multiple geo-inference schemes in a unified, standardized, and performance-optimized fashion. In addition to that, we present a visual interface, which offers an intuitive, real-time assessment of the accuracy of singular and combined methods as well as support in detecting and understanding possible anomalies.We demonstrate the usefulness and relevance of our approach in a comprehensive case study.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

VGI, Geo-inference, Geo-prediction, Visual Analytics

Konferenz

VGI Geovisual Analytics Workshop, colocated with BDVA 2018, 19. Okt. 2018, Konstanz, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MAHTAL, Sanae, Cristina LUPU, Benedikt ARMBRUSTER, Marvin BECHTOLD, Maximilian REICHEL, Thomas WANGLER, Dennis THOM, Steffen KOCH, Thomas ERTL, 2018. Analytical Workbench for Integrated Social Media Geo-Inference. VGI Geovisual Analytics Workshop, colocated with BDVA 2018. Konstanz, Germany, 19. Okt. 2018. In: BURGHARDT, Dirk, ed., Siming CHEN, ed., Gennady ANDRIENKO, ed., Natalia ANDRIENKO, ed., Ross PURVES, ed., Alexandra DIEHL, ed.. VGI Geovisual Analytics Workshop. 2018
BibTex
@inproceedings{Mahtal2018Analy-44251,
  year={2018},
  title={Analytical Workbench for Integrated Social Media Geo-Inference},
  booktitle={VGI Geovisual Analytics Workshop},
  editor={Burghardt, Dirk and Chen, Siming and Andrienko, Gennady and Andrienko, Natalia and Purves, Ross and Diehl, Alexandra},
  author={Mahtal, Sanae and Lupu, Cristina and Armbruster, Benedikt and Bechtold, Marvin and Reichel, Maximilian and Wangler, Thomas and Thom, Dennis and Koch, Steffen and Ertl, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44251">
    <dc:creator>Reichel, Maximilian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Analytical Workbench for Integrated Social Media Geo-Inference</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Thom, Dennis</dc:contributor>
    <dc:contributor>Bechtold, Marvin</dc:contributor>
    <dc:contributor>Armbruster, Benedikt</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44251/1/Mahtal_2-rzgd1myf2nng1.pdf"/>
    <dc:creator>Wangler, Thomas</dc:creator>
    <dc:contributor>Koch, Steffen</dc:contributor>
    <dc:creator>Armbruster, Benedikt</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-10T15:09:29Z</dcterms:available>
    <dc:creator>Thom, Dennis</dc:creator>
    <dc:contributor>Ertl, Thomas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2018</dcterms:issued>
    <dc:contributor>Wangler, Thomas</dc:contributor>
    <dc:contributor>Reichel, Maximilian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-10T15:09:29Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44251"/>
    <dcterms:abstract xml:lang="eng">In the realm of social media monitoring and analysis, the availability of location-based information is of pivotal importance to understand the spatial behavior of social media users. Especially in fields like disaster management and urban planning, such data holds huge value for analysts and decision makers alike. However, as only few posts and messages in platforms like Twitter are already provided with GPS-coordinates or geo-tags by the users, researchers have proposed various algorithmic and modeldriven means to infer this information from properties like the content, network, or geographic history of the users. Since many of these methods only focus on isolated features or specific models, this paper presents a comprehensive framework that allows to integrate, combine and compare multiple geo-inference schemes in a unified, standardized, and performance-optimized fashion. In addition to that, we present a visual interface, which offers an intuitive, real-time assessment of the accuracy of singular and combined methods as well as support in detecting and understanding possible anomalies.We demonstrate the usefulness and relevance of our approach in a comprehensive case study.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44251/1/Mahtal_2-rzgd1myf2nng1.pdf"/>
    <dc:creator>Koch, Steffen</dc:creator>
    <dc:creator>Lupu, Cristina</dc:creator>
    <dc:creator>Bechtold, Marvin</dc:creator>
    <dc:contributor>Mahtal, Sanae</dc:contributor>
    <dc:creator>Mahtal, Sanae</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Ertl, Thomas</dc:creator>
    <dc:contributor>Lupu, Cristina</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen