Publikation:

Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 336978

Projekt

LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

O'CONNER, Lisa, ed.. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017, pp. 2529-2537. IEEE Xplore Digital Library. ISSN 1063-6919. ISBN 978-1-5386-0457-1. Available under: doi: 10.1109/CVPR.2017.271

Zusammenfassung

We introduce a novel approach to jointly estimate consistent depth and normal maps from 4D light fields, with two main contributions. First, we build a cost volume from focal stack symmetry. However, in contrast to previous approaches, we introduce partial focal stacks in order to be able to robustly deal with occlusions. This idea already yields significanly better disparity maps. Second, even recent sublabel-accurate methods for multi-label optimization recover only a piecewise flat disparity map from the cost volume, with normals pointing mostly towards the image plane. This renders normal maps recovered from these approaches unsuitable for potential subsequent applications. We therefore propose regularization with a novel prior linking depth to normals, and imposing smoothness of the resulting normal field. We then jointly optimize over depth and normals to achieve estimates for both which surpass previous work in accuracy on a recent benchmark.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 21. Juli 2017 - 26. Juli 2017, Honolulu, HI
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690STRECKE, Michael, Anna ALPEROVICH, Bastian GOLDLÜCKE, 2017. Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, 21. Juli 2017 - 26. Juli 2017. In: O'CONNER, Lisa, ed.. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017, pp. 2529-2537. IEEE Xplore Digital Library. ISSN 1063-6919. ISBN 978-1-5386-0457-1. Available under: doi: 10.1109/CVPR.2017.271
BibTex
@inproceedings{Strecke2017Accur-41705,
  year={2017},
  doi={10.1109/CVPR.2017.271},
  title={Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry},
  isbn={978-1-5386-0457-1},
  issn={1063-6919},
  publisher={IEEE},
  address={Piscataway, NJ},
  series={IEEE Xplore Digital Library},
  booktitle={2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={2529--2537},
  editor={O'Conner, Lisa},
  author={Strecke, Michael and Alperovich, Anna and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41705">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">We introduce a novel approach to jointly estimate consistent depth and normal maps from 4D light fields, with two main contributions. First, we build a cost volume from focal stack symmetry. However, in contrast to previous approaches, we introduce partial focal stacks in order to be able to robustly deal with occlusions. This idea already yields significanly better disparity maps. Second, even recent sublabel-accurate methods for multi-label optimization recover only a piecewise flat disparity map from the cost volume, with normals pointing mostly towards the image plane. This renders normal maps recovered from these approaches unsuitable for potential subsequent applications. We therefore propose regularization with a novel prior linking depth to normals, and imposing smoothness of the resulting normal field. We then jointly optimize over depth and normals to achieve estimates for both which surpass previous work in accuracy on a recent benchmark.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Alperovich, Anna</dc:creator>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41705"/>
    <dcterms:title>Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry</dcterms:title>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:creator>Strecke, Michael</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-07T09:35:57Z</dc:date>
    <dc:contributor>Alperovich, Anna</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-07T09:35:57Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:contributor>Strecke, Michael</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2017</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen