Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We introduce a novel approach to jointly estimate consistent depth and normal maps from 4D light fields, with two main contributions. First, we build a cost volume from focal stack symmetry. However, in contrast to previous approaches, we introduce partial focal stacks in order to be able to robustly deal with occlusions. This idea already yields significanly better disparity maps. Second, even recent sublabel-accurate methods for multi-label optimization recover only a piecewise flat disparity map from the cost volume, with normals pointing mostly towards the image plane. This renders normal maps recovered from these approaches unsuitable for potential subsequent applications. We therefore propose regularization with a novel prior linking depth to normals, and imposing smoothness of the resulting normal field. We then jointly optimize over depth and normals to achieve estimates for both which surpass previous work in accuracy on a recent benchmark.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STRECKE, Michael, Anna ALPEROVICH, Bastian GOLDLÜCKE, 2017. Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, 21. Juli 2017 - 26. Juli 2017. In: O'CONNER, Lisa, ed.. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017, pp. 2529-2537. IEEE Xplore Digital Library. ISSN 1063-6919. ISBN 978-1-5386-0457-1. Available under: doi: 10.1109/CVPR.2017.271BibTex
@inproceedings{Strecke2017Accur-41705, year={2017}, doi={10.1109/CVPR.2017.271}, title={Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry}, isbn={978-1-5386-0457-1}, issn={1063-6919}, publisher={IEEE}, address={Piscataway, NJ}, series={IEEE Xplore Digital Library}, booktitle={2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, pages={2529--2537}, editor={O'Conner, Lisa}, author={Strecke, Michael and Alperovich, Anna and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41705"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">We introduce a novel approach to jointly estimate consistent depth and normal maps from 4D light fields, with two main contributions. First, we build a cost volume from focal stack symmetry. However, in contrast to previous approaches, we introduce partial focal stacks in order to be able to robustly deal with occlusions. This idea already yields significanly better disparity maps. Second, even recent sublabel-accurate methods for multi-label optimization recover only a piecewise flat disparity map from the cost volume, with normals pointing mostly towards the image plane. This renders normal maps recovered from these approaches unsuitable for potential subsequent applications. We therefore propose regularization with a novel prior linking depth to normals, and imposing smoothness of the resulting normal field. We then jointly optimize over depth and normals to achieve estimates for both which surpass previous work in accuracy on a recent benchmark.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Alperovich, Anna</dc:creator> <dc:contributor>Goldlücke, Bastian</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41705"/> <dcterms:title>Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry</dcterms:title> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:creator>Strecke, Michael</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-07T09:35:57Z</dc:date> <dc:contributor>Alperovich, Anna</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-07T09:35:57Z</dcterms:available> <dc:language>eng</dc:language> <dc:contributor>Strecke, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2017</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>