Publikation:

A comparison of accurate automatic hippocampal segmentation methods

Lade...
Vorschaubild

Dateien

Zandifar_2-skvhn40sgzrz5.pdf
Zandifar_2-skvhn40sgzrz5.pdfGröße: 482.6 KBDownloads: 273

Datum

2017

Autor:innen

Zandifar, Azar
Fonov, Vladimir
Coupé, Pierrick
Collins, D. Louis

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

NeuroImage. 2017, 155, pp. 383-393. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2017.04.018

Zusammenfassung

The hippocampus is one of the first brain structures affected by Alzheimer's disease (AD). While many automatic methods for hippocampal segmentation exist, few studies have compared them on the same data. In this study, we compare four fully automated hippocampal segmentation methods in terms of their conformity with manual segmentation and their ability to be used as an AD biomarker in clinical settings. We also apply error correction to the four automatic segmentation methods, and complete a comprehensive validation to investigate differences between the methods. The effect size and classification performance is measured for AD versus normal control (NC) groups and for stable mild cognitive impairment (sMCI) versus progressive mild cognitive impairment (pMCI) groups. Our study shows that the nonlinear patch-based segmentation method with error correction is the most accurate automatic segmentation method and yields the most conformity with manual segmentation (κ=0.894). The largest effect size between AD versus NC and sMCI versus pMCI is produced by FreeSurfer with error correction. We further show that, using only hippocampal volume, age, and sex as features, the area under the receiver operating characteristic curve reaches up to 0.8813 for AD versus NC and 0.6451 for sMCI versus pMCI. However, the automatic segmentation methods are not significantly different in their performance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Hippocampal segmentation; Alzheimer's disease; Dice's κ; Cohen's d; Area under receiver operating characteristic curve

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZANDIFAR, Azar, Vladimir FONOV, Pierrick COUPÉ, Jens C. PRUESSNER, D. Louis COLLINS, 2017. A comparison of accurate automatic hippocampal segmentation methods. In: NeuroImage. 2017, 155, pp. 383-393. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2017.04.018
BibTex
@article{Zandifar2017-07-15compa-41155,
  year={2017},
  doi={10.1016/j.neuroimage.2017.04.018},
  title={A comparison of accurate automatic hippocampal segmentation methods},
  volume={155},
  issn={1053-8119},
  journal={NeuroImage},
  pages={383--393},
  author={Zandifar, Azar and Fonov, Vladimir and Coupé, Pierrick and Pruessner, Jens C. and Collins, D. Louis}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41155">
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-25T10:13:48Z</dcterms:available>
    <dc:contributor>Collins, D. Louis</dc:contributor>
    <dcterms:title>A comparison of accurate automatic hippocampal segmentation methods</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Fonov, Vladimir</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41155/1/Zandifar_2-skvhn40sgzrz5.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41155/1/Zandifar_2-skvhn40sgzrz5.pdf"/>
    <dc:creator>Zandifar, Azar</dc:creator>
    <dc:creator>Fonov, Vladimir</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2017-07-15</dcterms:issued>
    <dc:contributor>Zandifar, Azar</dc:contributor>
    <dc:contributor>Pruessner, Jens C.</dc:contributor>
    <dc:creator>Pruessner, Jens C.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41155"/>
    <dc:creator>Collins, D. Louis</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Coupé, Pierrick</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-25T10:13:48Z</dc:date>
    <dc:contributor>Coupé, Pierrick</dc:contributor>
    <dcterms:abstract xml:lang="eng">The hippocampus is one of the first brain structures affected by Alzheimer's disease (AD). While many automatic methods for hippocampal segmentation exist, few studies have compared them on the same data. In this study, we compare four fully automated hippocampal segmentation methods in terms of their conformity with manual segmentation and their ability to be used as an AD biomarker in clinical settings. We also apply error correction to the four automatic segmentation methods, and complete a comprehensive validation to investigate differences between the methods. The effect size and classification performance is measured for AD versus normal control (NC) groups and for stable mild cognitive impairment (sMCI) versus progressive mild cognitive impairment (pMCI) groups. Our study shows that the nonlinear patch-based segmentation method with error correction is the most accurate automatic segmentation method and yields the most conformity with manual segmentation (κ=0.894). The largest effect size between AD versus NC and sMCI versus pMCI is produced by FreeSurfer with error correction. We further show that, using only hippocampal volume, age, and sex as features, the area under the receiver operating characteristic curve reaches up to 0.8813 for AD versus NC and 0.6451 for sMCI versus pMCI. However, the automatic segmentation methods are not significantly different in their performance.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen