Conservation, Convergence, and Computation for Evolving Heterogeneous Elastic Wires
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 404870139
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The elastic energy of a bending-resistant interface depends on both its geometry and its material composition. We consider such a heterogeneous interface in the plane, modeled by a curve equipped with an additional density function. The resulting energy captures the complex interplay between curvature and density effects, resembling the Canham–Helfrich functional. We describe the curve by its inclination angle, so that the equilibrium equations reduce to an elliptic system of second order. After a brief variational discussion, we investigate the associated nonlocal L2-gradient flow evolution, a coupled quasilinear parabolic problem. We analyze the (non)preservation of quantities such as convexity, positivity, and symmetry, as well as the asymptotic behavior of the system. The results are illustrated by numerical experiments.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DALL’ACQUA, Anna, Gaspard JANKOWIAK, Leonie LANGER, Fabian RUPP, 2024. Conservation, Convergence, and Computation for Evolving Heterogeneous Elastic Wires. In: SIAM Journal on Mathematical Analysis. Society for Industrial & Applied Mathematics (SIAM). 2024, 56(4), S. 4494-4529. ISSN 0036-1410. eISSN 1095-7154. Verfügbar unter: doi: 10.1137/23m159086xBibTex
@article{DallAcqua2024-08-31Conse-71198, year={2024}, doi={10.1137/23m159086x}, title={Conservation, Convergence, and Computation for Evolving Heterogeneous Elastic Wires}, number={4}, volume={56}, issn={0036-1410}, journal={SIAM Journal on Mathematical Analysis}, pages={4494--4529}, author={Dall’Acqua, Anna and Jankowiak, Gaspard and Langer, Leonie and Rupp, Fabian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71198"> <dc:contributor>Rupp, Fabian</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71198"/> <dc:creator>Rupp, Fabian</dc:creator> <dcterms:title>Conservation, Convergence, and Computation for Evolving Heterogeneous Elastic Wires</dcterms:title> <dc:creator>Dall’Acqua, Anna</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-11T12:15:50Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-11T12:15:50Z</dc:date> <dc:contributor>Dall’Acqua, Anna</dc:contributor> <dc:creator>Langer, Leonie</dc:creator> <dcterms:issued>2024-08-31</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Jankowiak, Gaspard</dc:contributor> <dcterms:abstract>The elastic energy of a bending-resistant interface depends on both its geometry and its material composition. We consider such a heterogeneous interface in the plane, modeled by a curve equipped with an additional density function. The resulting energy captures the complex interplay between curvature and density effects, resembling the Canham–Helfrich functional. We describe the curve by its inclination angle, so that the equilibrium equations reduce to an elliptic system of second order. After a brief variational discussion, we investigate the associated nonlocal L<sup>2</sup>-gradient flow evolution, a coupled quasilinear parabolic problem. We analyze the (non)preservation of quantities such as convexity, positivity, and symmetry, as well as the asymptotic behavior of the system. The results are illustrated by numerical experiments.</dcterms:abstract> <dc:contributor>Langer, Leonie</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Jankowiak, Gaspard</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>