NECKAr : A Named Entity Classifier for Wikidata
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Many Information Extraction tasks such as Named Entity Recognition or Event Detection require background repositories that provide a classification of entities into the basic, predominantly used classes location, person, and organization. Several available knowledge bases offer a very detailed and specific ontology of entities that can be used as a repository. However, due to the mechanisms behind their construction, they are relatively static and of limited use to IE approaches that require up-to-date information. In contrast, Wikidata is a community-edited knowledge base that is kept current by its userbase, but has a constantly evolving and less rigid ontology structure that does not correspond to these basic classes. In this paper we present the tool NECKAr, which assigns Wikidata entities to the three main classes of named entities, as well as the resulting Wikidata NE dataset that consists of over 8 million classified entities. Both are available at http://event.ifi.uni-heidelberg.de/?page_id=532.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GEISS, Johanna, Andreas SPITZ, Michael GERTZ, 2018. NECKAr : A Named Entity Classifier for Wikidata. GSCL 2017: International Conference of the German Society for Computational Linguistics and Language Technology. Berlin, Germany, 13. Sept. 2017 - 14. Sept. 2017. In: REHM, Georg, ed., Thierry DECLERCK, ed.. Language Technologies for the Challenges of the Digital Age : 27th International Conference, GSCL 2017, Proceedings. Cham: Springer International Publishing, 2018, pp. 115-129. Lecture Notes in Computer Science. 10713. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-73705-8. Available under: doi: 10.1007/978-3-319-73706-5_10BibTex
@inproceedings{Gei2018-01-06NECKA-55799, year={2018}, doi={10.1007/978-3-319-73706-5_10}, title={NECKAr : A Named Entity Classifier for Wikidata}, number={10713}, isbn={978-3-319-73705-8}, issn={0302-9743}, publisher={Springer International Publishing}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Language Technologies for the Challenges of the Digital Age : 27th International Conference, GSCL 2017, Proceedings}, pages={115--129}, editor={Rehm, Georg and Declerck, Thierry}, author={Geiß, Johanna and Spitz, Andreas and Gertz, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55799"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>NECKAr : A Named Entity Classifier for Wikidata</dcterms:title> <dc:creator>Spitz, Andreas</dc:creator> <dc:creator>Geiß, Johanna</dc:creator> <dc:contributor>Gertz, Michael</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-08T13:10:17Z</dcterms:available> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Geiß, Johanna</dc:contributor> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55799/1/Geiss_2-srmq9b397aes4.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018-01-06</dcterms:issued> <dc:creator>Gertz, Michael</dc:creator> <dc:contributor>Spitz, Andreas</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55799/1/Geiss_2-srmq9b397aes4.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55799"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-08T13:10:17Z</dc:date> <dcterms:abstract xml:lang="eng">Many Information Extraction tasks such as Named Entity Recognition or Event Detection require background repositories that provide a classification of entities into the basic, predominantly used classes location, person, and organization. Several available knowledge bases offer a very detailed and specific ontology of entities that can be used as a repository. However, due to the mechanisms behind their construction, they are relatively static and of limited use to IE approaches that require up-to-date information. In contrast, Wikidata is a community-edited knowledge base that is kept current by its userbase, but has a constantly evolving and less rigid ontology structure that does not correspond to these basic classes. In this paper we present the tool NECKAr, which assigns Wikidata entities to the three main classes of named entities, as well as the resulting Wikidata NE dataset that consists of over 8 million classified entities. Both are available at http://event.ifi.uni-heidelberg.de/?page_id=532.</dcterms:abstract> </rdf:Description> </rdf:RDF>