NECKAr : A Named Entity Classifier for Wikidata

Lade...
Vorschaubild
Dateien
Geiss_2-srmq9b397aes4.pdf
Geiss_2-srmq9b397aes4.pdfGröße: 732.22 KBDownloads: 290
Datum
2018
Autor:innen
Geiß, Johanna
Gertz, Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
REHM, Georg, ed., Thierry DECLERCK, ed.. Language Technologies for the Challenges of the Digital Age : 27th International Conference, GSCL 2017, Proceedings. Cham: Springer International Publishing, 2018, pp. 115-129. Lecture Notes in Computer Science. 10713. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-73705-8. Available under: doi: 10.1007/978-3-319-73706-5_10
Zusammenfassung

Many Information Extraction tasks such as Named Entity Recognition or Event Detection require background repositories that provide a classification of entities into the basic, predominantly used classes location, person, and organization. Several available knowledge bases offer a very detailed and specific ontology of entities that can be used as a repository. However, due to the mechanisms behind their construction, they are relatively static and of limited use to IE approaches that require up-to-date information. In contrast, Wikidata is a community-edited knowledge base that is kept current by its userbase, but has a constantly evolving and less rigid ontology structure that does not correspond to these basic classes. In this paper we present the tool NECKAr, which assigns Wikidata entities to the three main classes of named entities, as well as the resulting Wikidata NE dataset that consists of over 8 million classified entities. Both are available at http://event.ifi.uni-heidelberg.de/?page_id=532.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Wikidata, Named Entity Classes, Infobox, Wikipedia Language Versions, Wikipedia Categories
Konferenz
GSCL 2017: International Conference of the German Society for Computational Linguistics and Language Technology, 13. Sept. 2017 - 14. Sept. 2017, Berlin, Germany
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690GEISS, Johanna, Andreas SPITZ, Michael GERTZ, 2018. NECKAr : A Named Entity Classifier for Wikidata. GSCL 2017: International Conference of the German Society for Computational Linguistics and Language Technology. Berlin, Germany, 13. Sept. 2017 - 14. Sept. 2017. In: REHM, Georg, ed., Thierry DECLERCK, ed.. Language Technologies for the Challenges of the Digital Age : 27th International Conference, GSCL 2017, Proceedings. Cham: Springer International Publishing, 2018, pp. 115-129. Lecture Notes in Computer Science. 10713. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-73705-8. Available under: doi: 10.1007/978-3-319-73706-5_10
BibTex
@inproceedings{Gei2018-01-06NECKA-55799,
  year={2018},
  doi={10.1007/978-3-319-73706-5_10},
  title={NECKAr : A Named Entity Classifier for Wikidata},
  number={10713},
  isbn={978-3-319-73705-8},
  issn={0302-9743},
  publisher={Springer International Publishing},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Language Technologies for the Challenges of the Digital Age : 27th International Conference, GSCL 2017, Proceedings},
  pages={115--129},
  editor={Rehm, Georg and Declerck, Thierry},
  author={Geiß, Johanna and Spitz, Andreas and Gertz, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55799">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>NECKAr : A Named Entity Classifier for Wikidata</dcterms:title>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dc:creator>Geiß, Johanna</dc:creator>
    <dc:contributor>Gertz, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-08T13:10:17Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Geiß, Johanna</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55799/1/Geiss_2-srmq9b397aes4.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2018-01-06</dcterms:issued>
    <dc:creator>Gertz, Michael</dc:creator>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55799/1/Geiss_2-srmq9b397aes4.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55799"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-08T13:10:17Z</dc:date>
    <dcterms:abstract xml:lang="eng">Many Information Extraction tasks such as Named Entity Recognition or Event Detection require background repositories that provide a classification of entities into the basic, predominantly used classes location, person, and organization. Several available knowledge bases offer a very detailed and specific ontology of entities that can be used as a repository. However, due to the mechanisms behind their construction, they are relatively static and of limited use to IE approaches that require up-to-date information. In contrast, Wikidata is a community-edited knowledge base that is kept current by its userbase, but has a constantly evolving and less rigid ontology structure that does not correspond to these basic classes. In this paper we present the tool NECKAr, which assigns Wikidata entities to the three main classes of named entities, as well as the resulting Wikidata NE dataset that consists of over 8 million classified entities. Both are available at http://event.ifi.uni-heidelberg.de/?page_id=532.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen