Protostellar collapse and fragmentation using an MHD gadget
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the ‘Boss and Bodenheimer standard isothermal test case’, to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the ‘magnetic cushioning effect’, where the magnetic field is wound up to form a ‘cushion’ between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BÜRZLE, Florian, Paul C. CLARK, Federico STASYSZYN, Thomas GREIF, Klaus DOLAG, Ralf S. KLESSEN, Peter NIELABA, 2011. Protostellar collapse and fragmentation using an MHD gadget. In: Monthly Notices of the Royal Astronomical Society. 2011, 412(1), pp. 171-186. ISSN 0035-8711. Available under: doi: 10.1111/j.1365-2966.2010.17896.xBibTex
@article{Burzle2011Proto-19168, year={2011}, doi={10.1111/j.1365-2966.2010.17896.x}, title={Protostellar collapse and fragmentation using an MHD gadget}, number={1}, volume={412}, issn={0035-8711}, journal={Monthly Notices of the Royal Astronomical Society}, pages={171--186}, author={Bürzle, Florian and Clark, Paul C. and Stasyszyn, Federico and Greif, Thomas and Dolag, Klaus and Klessen, Ralf S. and Nielaba, Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19168"> <dc:creator>Dolag, Klaus</dc:creator> <dcterms:bibliographicCitation>Publ. in: Monthly notices of the Royal Astronomical Society ; 412 (2011), 1. - pp. 171-186</dcterms:bibliographicCitation> <dc:contributor>Greif, Thomas</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T11:01:59Z</dc:date> <dc:contributor>Dolag, Klaus</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Nielaba, Peter</dc:contributor> <dc:contributor>Bürzle, Florian</dc:contributor> <dc:contributor>Stasyszyn, Federico</dc:contributor> <dc:creator>Greif, Thomas</dc:creator> <dc:creator>Nielaba, Peter</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the ‘Boss and Bodenheimer standard isothermal test case’, to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the ‘magnetic cushioning effect’, where the magnetic field is wound up to form a ‘cushion’ between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Clark, Paul C.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Clark, Paul C.</dc:contributor> <dc:creator>Klessen, Ralf S.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19168"/> <dc:creator>Stasyszyn, Federico</dc:creator> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T11:01:59Z</dcterms:available> <dc:creator>Bürzle, Florian</dc:creator> <dcterms:issued>2011</dcterms:issued> <dc:contributor>Klessen, Ralf S.</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Protostellar collapse and fragmentation using an MHD gadget</dcterms:title> </rdf:Description> </rdf:RDF>