Publikation: Self-Organized Construction by Population Coding
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The automatic generation of robot controllers by machine learning or evolutionary computation is still challenging and even more so for collective robotics. We follow the recently proposed paradigm of 'population coding' to compose robot swarms for collective construction. We define a controller template as finite state machine, enumerate a finite number of specified robot controller types to choose from, and use evolutionary robotics to evolve effective homogeneous and heterogeneous compositions of robot swarms using selections of these controllers. Besides an objective for solving the actual construction task we also add objectives for subtasks, and to minimize the number of different chosen robot types. For three variants of a collective construction task we find effective solutions with both homogeneous and heterogeneous swarms.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NIESS, Michael, Heiko HAMANN, 2019. Self-Organized Construction by Population Coding. FAS*W 2019 : IEEE 4th International Workshops on Foundations and Applications of Self* Systems. Umea, Sweden, 16. Juni 2019 - 20. Juni 2019. In: 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W). Piscataway, NJ: IEEE, 2019, pp. 219-224. ISBN 978-1-72812-406-3. Available under: doi: 10.1109/FAS-W.2019.00058BibTex
@inproceedings{Niess2019SelfO-59755, year={2019}, doi={10.1109/FAS-W.2019.00058}, title={Self-Organized Construction by Population Coding}, isbn={978-1-72812-406-3}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)}, pages={219--224}, author={Niess, Michael and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59755"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59755"/> <dcterms:issued>2019</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T13:05:03Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Niess, Michael</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Niess, Michael</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T13:05:03Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:title>Self-Organized Construction by Population Coding</dcterms:title> <dcterms:abstract xml:lang="eng">The automatic generation of robot controllers by machine learning or evolutionary computation is still challenging and even more so for collective robotics. We follow the recently proposed paradigm of 'population coding' to compose robot swarms for collective construction. We define a controller template as finite state machine, enumerate a finite number of specified robot controller types to choose from, and use evolutionary robotics to evolve effective homogeneous and heterogeneous compositions of robot swarms using selections of these controllers. Besides an objective for solving the actual construction task we also add objectives for subtasks, and to minimize the number of different chosen robot types. For three variants of a collective construction task we find effective solutions with both homogeneous and heterogeneous swarms.</dcterms:abstract> <dc:contributor>Hamann, Heiko</dc:contributor> <dc:creator>Hamann, Heiko</dc:creator> </rdf:Description> </rdf:RDF>