Optimal quantum state tomography with noisy gates
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Quantum state tomography (QST) represents an essential tool for the characterization, verification, and validation (QCVV) of quantum processors. Only for a few idealized scenarios, there are analytic results for the optimal measurement set for QST. E.g., in a setting of non-degenerate measurements, an optimal minimal set of measurement operators for QST has eigenbases which are mutually unbiased. However, in other set-ups, dependent on the rank of the projection operators and the size of the quantum system, the optimal choice of measurements for efficient QST needs to be numerically approximated. We have generalized this problem by introducing the framework of customized efficient QST . Here we extend customized QST and look for the optimal measurement set for QST in the case where some of the quantum gates applied in the measurement process are noisy. To achieve this, we use two distinct noise models: first, the depolarizing channel, and second, over- and under-rotation in single-qubit and to two-qubit gates (for further information, please see Methods). We demonstrate the benefit of using entangling gates for the efficient QST measurement schemes for two qubits at realistic noise levels, by comparing the fidelity of reconstruction of our optimized QST measurement set to the state-of-the-art scheme using only product bases.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
IVANOVA-ROHLING, Violeta, Niklas ROHLING, Guido BURKARD, 2023. Optimal quantum state tomography with noisy gates. In: EPJ Quantum Technology. Springer. 2023, 10(1), 25. ISSN 2662-4400. eISSN 2196-0763. Available under: doi: 10.1140/epjqt/s40507-023-00181-2BibTex
@article{IvanovaRohling2023-06-28Optim-67481, year={2023}, doi={10.1140/epjqt/s40507-023-00181-2}, title={Optimal quantum state tomography with noisy gates}, number={1}, volume={10}, issn={2662-4400}, journal={EPJ Quantum Technology}, author={Ivanova-Rohling, Violeta and Rohling, Niklas and Burkard, Guido}, note={Article Number: 25} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67481"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-02T10:40:14Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Ivanova-Rohling, Violeta</dc:contributor> <dcterms:issued>2023-06-28</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-02T10:40:14Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67481/1/Ivanova-Rohling_2-u8vdc1a7jg6o2.pdf"/> <dc:creator>Ivanova-Rohling, Violeta</dc:creator> <dc:creator>Rohling, Niklas</dc:creator> <dcterms:title>Optimal quantum state tomography with noisy gates</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67481/1/Ivanova-Rohling_2-u8vdc1a7jg6o2.pdf"/> <dc:contributor>Rohling, Niklas</dc:contributor> <dc:creator>Burkard, Guido</dc:creator> <dc:contributor>Burkard, Guido</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract>Quantum state tomography (QST) represents an essential tool for the characterization, verification, and validation (QCVV) of quantum processors. Only for a few idealized scenarios, there are analytic results for the optimal measurement set for QST. E.g., in a setting of non-degenerate measurements, an optimal minimal set of measurement operators for QST has eigenbases which are mutually unbiased. However, in other set-ups, dependent on the rank of the projection operators and the size of the quantum system, the optimal choice of measurements for efficient QST needs to be numerically approximated. We have generalized this problem by introducing the framework of customized efficient QST . Here we extend customized QST and look for the optimal measurement set for QST in the case where some of the quantum gates applied in the measurement process are noisy. To achieve this, we use two distinct noise models: first, the depolarizing channel, and second, over- and under-rotation in single-qubit and to two-qubit gates (for further information, please see Methods). We demonstrate the benefit of using entangling gates for the efficient QST measurement schemes for two qubits at realistic noise levels, by comparing the fidelity of reconstruction of our optimized QST measurement set to the state-of-the-art scheme using only product bases.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67481"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:rights>Attribution 4.0 International</dc:rights> </rdf:Description> </rdf:RDF>