Forecasting Covariance Matrices : A Mixed Approach

Lade...
Vorschaubild
Dateien
Halbleib_0-295366.pdf
Halbleib_0-295366.pdfGröße: 846.88 KBDownloads: 697
Datum
2016
Autor:innen
Voev, Valeri
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Financial Econometrics. 2016, 14(2), pp. 383-417. ISSN 1479-8409. eISSN 1479-8417. Available under: doi: 10.1093/jjfinec/nbu031
Zusammenfassung

In this article, we introduce a new method of forecasting large-dimensional covariance matrices by exploiting the theoretical and empirical potential of mixing forecasts derived from different information sets. The main theoretical contribution of the article is to find the conditions under which a mixed approach (MA) provides a smaller mean squared forecast error than a standard one. The conditions are general and do not rely on distributional assumptions of the forecasting errors or on any particular model specification. The empirical contribution of the article regards a comprehensive comparative exercise of the new approach against standard ones when forecasting the covariance matrix of a portfolio of thirty stocks. The implemented MA uses volatility forecasts computed from high-frequency-based models and correlation forecasts using realized-volatility-adjusted dynamic conditional correlation models. The MA always outperforms the standard methods computed from daily returns and performs equally well to the ones using high-frequency-based specifications, however at a lower computational cost.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690CHIRIAC, Roxana, Valeri VOEV, 2016. Forecasting Covariance Matrices : A Mixed Approach. In: Journal of Financial Econometrics. 2016, 14(2), pp. 383-417. ISSN 1479-8409. eISSN 1479-8417. Available under: doi: 10.1093/jjfinec/nbu031
BibTex
@article{Chiriac2016Forec-31279,
  year={2016},
  doi={10.1093/jjfinec/nbu031},
  title={Forecasting Covariance Matrices : A Mixed Approach},
  number={2},
  volume={14},
  issn={1479-8409},
  journal={Journal of Financial Econometrics},
  pages={383--417},
  author={Chiriac, Roxana and Voev, Valeri}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31279">
    <dc:creator>Chiriac, Roxana</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Chiriac, Roxana</dc:contributor>
    <dc:creator>Voev, Valeri</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31279/1/Halbleib_0-295366.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">In this article, we introduce a new method of forecasting large-dimensional covariance matrices by exploiting the theoretical and empirical potential of mixing forecasts derived from different information sets. The main theoretical contribution of the article is to find the conditions under which a mixed approach (MA) provides a smaller mean squared forecast error than a standard one. The conditions are general and do not rely on distributional assumptions of the forecasting errors or on any particular model specification. The empirical contribution of the article regards a comprehensive comparative exercise of the new approach against standard ones when forecasting the covariance matrix of a portfolio of thirty stocks. The implemented MA uses volatility forecasts computed from high-frequency-based models and correlation forecasts using realized-volatility-adjusted dynamic conditional correlation models. The MA always outperforms the standard methods computed from daily returns and performs equally well to the ones using high-frequency-based specifications, however at a lower computational cost.</dcterms:abstract>
    <dc:contributor>Voev, Valeri</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-25T07:30:39Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:issued>2016</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31279/1/Halbleib_0-295366.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-25T07:30:39Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31279"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:title>Forecasting Covariance Matrices : A Mixed Approach</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen