Forecasting Covariance Matrices : A Mixed Approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this article, we introduce a new method of forecasting large-dimensional covariance matrices by exploiting the theoretical and empirical potential of mixing forecasts derived from different information sets. The main theoretical contribution of the article is to find the conditions under which a mixed approach (MA) provides a smaller mean squared forecast error than a standard one. The conditions are general and do not rely on distributional assumptions of the forecasting errors or on any particular model specification. The empirical contribution of the article regards a comprehensive comparative exercise of the new approach against standard ones when forecasting the covariance matrix of a portfolio of thirty stocks. The implemented MA uses volatility forecasts computed from high-frequency-based models and correlation forecasts using realized-volatility-adjusted dynamic conditional correlation models. The MA always outperforms the standard methods computed from daily returns and performs equally well to the ones using high-frequency-based specifications, however at a lower computational cost.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHIRIAC, Roxana, Valeri VOEV, 2016. Forecasting Covariance Matrices : A Mixed Approach. In: Journal of Financial Econometrics. 2016, 14(2), pp. 383-417. ISSN 1479-8409. eISSN 1479-8417. Available under: doi: 10.1093/jjfinec/nbu031BibTex
@article{Chiriac2016Forec-31279, year={2016}, doi={10.1093/jjfinec/nbu031}, title={Forecasting Covariance Matrices : A Mixed Approach}, number={2}, volume={14}, issn={1479-8409}, journal={Journal of Financial Econometrics}, pages={383--417}, author={Chiriac, Roxana and Voev, Valeri} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31279"> <dc:creator>Chiriac, Roxana</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Chiriac, Roxana</dc:contributor> <dc:creator>Voev, Valeri</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31279/1/Halbleib_0-295366.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">In this article, we introduce a new method of forecasting large-dimensional covariance matrices by exploiting the theoretical and empirical potential of mixing forecasts derived from different information sets. The main theoretical contribution of the article is to find the conditions under which a mixed approach (MA) provides a smaller mean squared forecast error than a standard one. The conditions are general and do not rely on distributional assumptions of the forecasting errors or on any particular model specification. The empirical contribution of the article regards a comprehensive comparative exercise of the new approach against standard ones when forecasting the covariance matrix of a portfolio of thirty stocks. The implemented MA uses volatility forecasts computed from high-frequency-based models and correlation forecasts using realized-volatility-adjusted dynamic conditional correlation models. The MA always outperforms the standard methods computed from daily returns and performs equally well to the ones using high-frequency-based specifications, however at a lower computational cost.</dcterms:abstract> <dc:contributor>Voev, Valeri</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-25T07:30:39Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:issued>2016</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31279/1/Halbleib_0-295366.pdf"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-25T07:30:39Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31279"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:title>Forecasting Covariance Matrices : A Mixed Approach</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> </rdf:Description> </rdf:RDF>