Publikation:

Forecasting Covariance Matrices : A Mixed Approach

Lade...
Vorschaubild

Dateien

Halbleib_0-295366.pdf
Halbleib_0-295366.pdfGröße: 846.88 KBDownloads: 734

Datum

2016

Autor:innen

Voev, Valeri

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Financial Econometrics. 2016, 14(2), pp. 383-417. ISSN 1479-8409. eISSN 1479-8417. Available under: doi: 10.1093/jjfinec/nbu031

Zusammenfassung

In this article, we introduce a new method of forecasting large-dimensional covariance matrices by exploiting the theoretical and empirical potential of mixing forecasts derived from different information sets. The main theoretical contribution of the article is to find the conditions under which a mixed approach (MA) provides a smaller mean squared forecast error than a standard one. The conditions are general and do not rely on distributional assumptions of the forecasting errors or on any particular model specification. The empirical contribution of the article regards a comprehensive comparative exercise of the new approach against standard ones when forecasting the covariance matrix of a portfolio of thirty stocks. The implemented MA uses volatility forecasts computed from high-frequency-based models and correlation forecasts using realized-volatility-adjusted dynamic conditional correlation models. The MA always outperforms the standard methods computed from daily returns and performs equally well to the ones using high-frequency-based specifications, however at a lower computational cost.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHIRIAC, Roxana, Valeri VOEV, 2016. Forecasting Covariance Matrices : A Mixed Approach. In: Journal of Financial Econometrics. 2016, 14(2), pp. 383-417. ISSN 1479-8409. eISSN 1479-8417. Available under: doi: 10.1093/jjfinec/nbu031
BibTex
@article{Chiriac2016Forec-31279,
  year={2016},
  doi={10.1093/jjfinec/nbu031},
  title={Forecasting Covariance Matrices : A Mixed Approach},
  number={2},
  volume={14},
  issn={1479-8409},
  journal={Journal of Financial Econometrics},
  pages={383--417},
  author={Chiriac, Roxana and Voev, Valeri}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31279">
    <dc:creator>Chiriac, Roxana</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Chiriac, Roxana</dc:contributor>
    <dc:creator>Voev, Valeri</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31279/1/Halbleib_0-295366.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">In this article, we introduce a new method of forecasting large-dimensional covariance matrices by exploiting the theoretical and empirical potential of mixing forecasts derived from different information sets. The main theoretical contribution of the article is to find the conditions under which a mixed approach (MA) provides a smaller mean squared forecast error than a standard one. The conditions are general and do not rely on distributional assumptions of the forecasting errors or on any particular model specification. The empirical contribution of the article regards a comprehensive comparative exercise of the new approach against standard ones when forecasting the covariance matrix of a portfolio of thirty stocks. The implemented MA uses volatility forecasts computed from high-frequency-based models and correlation forecasts using realized-volatility-adjusted dynamic conditional correlation models. The MA always outperforms the standard methods computed from daily returns and performs equally well to the ones using high-frequency-based specifications, however at a lower computational cost.</dcterms:abstract>
    <dc:contributor>Voev, Valeri</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-25T07:30:39Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:issued>2016</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31279/1/Halbleib_0-295366.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-25T07:30:39Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31279"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:title>Forecasting Covariance Matrices : A Mixed Approach</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen