Learning different concept hierarchies and the relations between them from classified data

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
DAMIART
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
MAGDALENA-BENEDITO, Rafael, ed. and others. Intelligent data analysis for real-life applications : theory and practice. Hershey, PA: Information Science Reference, 2012, pp. 18-34. ISBN 978-1-4666-1806-0. Available under: doi: 10.4018/978-1-4666-1806-0.ch002
Zusammenfassung

Methods for the automatic extraction of taxonomies and concept hierarchies from data have recently emerged as essential assistance for humans in ontology construction. The objective of this chapter is to show how the extraction of concept hierarchies and finding relations between them can be effectively coupled with a multi-label classification task. The authors introduce a data mining system which performs classification and addresses both issues by means of association rule mining. The proposed system has been tested on two real-world datasets with the class labels of each dataset coming from two different class hierarchies. Several experiments on hierarchy extraction and concept relation were conducted in order to evaluate the system and three different interestingness measures were applied, to select the most important relations between concepts. One of the measures was developed by the authors. The experimental results showed that the system is able to infer quite accurate concept hierarchies and associations among the concepts. It is therefore well suited for classification-based reasoning.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
association rule mining, data mining
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BENITES, Fernando, Elena SAPOZHNIKOVA, 2012. Learning different concept hierarchies and the relations between them from classified data. In: MAGDALENA-BENEDITO, Rafael, ed. and others. Intelligent data analysis for real-life applications : theory and practice. Hershey, PA: Information Science Reference, 2012, pp. 18-34. ISBN 978-1-4666-1806-0. Available under: doi: 10.4018/978-1-4666-1806-0.ch002
BibTex
@incollection{Benites2012Learn-21455,
  year={2012},
  doi={10.4018/978-1-4666-1806-0.ch002},
  title={Learning different concept hierarchies and the relations between them from classified data},
  isbn={978-1-4666-1806-0},
  publisher={Information Science Reference},
  address={Hershey, PA},
  booktitle={Intelligent data analysis for real-life applications : theory and practice},
  pages={18--34},
  editor={Magdalena-Benedito, Rafael},
  author={Benites, Fernando and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21455">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-08T08:43:58Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-08T08:43:58Z</dcterms:available>
    <dc:creator>Benites, Fernando</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>Intelligent data analysis for real-life applications : theory and practice / Rafael Magdalena-Benedito ... - Hershey, PA : Information Science Reference, 2012. - S. 18-34. - ISBN 978-1-4666-1806-0</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21455"/>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <dcterms:title>Learning different concept hierarchies and the relations between them from classified data</dcterms:title>
    <dcterms:abstract xml:lang="eng">Methods for the automatic extraction of taxonomies and concept hierarchies from data have recently emerged as essential assistance for humans in ontology construction. The objective of this chapter is to show how the extraction of concept hierarchies and finding relations between them can be effectively coupled with a multi-label classification task. The authors introduce a data mining system which performs classification and addresses both issues by means of association rule mining. The proposed system has been tested on two real-world datasets with the class labels of each dataset coming from two different class hierarchies. Several experiments on hierarchy extraction and concept relation were conducted in order to evaluate the system and three different interestingness measures were applied, to select the most important relations between concepts. One of the measures was developed by the authors. The experimental results showed that the system is able to infer quite accurate concept hierarchies and associations among the concepts. It is therefore well suited for classification-based reasoning.</dcterms:abstract>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:issued>2012</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen