Publikation:

Collective Change Detection : Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot Swarms

Lade...
Vorschaubild

Dateien

Wahby_2-vi4ph23zvggy4.pdf
Wahby_2-vi4ph23zvggy4.pdfGröße: 964.81 KBDownloads: 53

Datum

2019

Autor:innen

Eschke, Catriona
Schmickl, Thomas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ALIFE 2019 : The 2019 Conference on Artificial Life. Cambridge, Massachusetts: MIT Press, 2019, pp. 642-649. Available under: doi: 10.1162/isal_a_00233

Zusammenfassung

Robot swarms are known to be robust to individual robot failures. However, a reduced swarm size causes a reduced swarm density. A too low swarm density may then decrease swarm performance, that should be compensated by adapting the individual behavior. Similarly, swarm behaviors can also be adapted to changes in the environment, such as dynamic light conditions. We study aggregation of swarm robots controlled by an extended variant of the BEECLUST algorithm. The robots are asked to aggregate at the brightest spot in their environment. Our approach efficiently adapts this swarm aggregation behavior to variability in swarm density and light conditions. First, each robot individually monitors its environment continuously by sampling its local swarm density and perceived light condition. Second, we exploit the collaboration of robots by letting them share features of these measurements with their neighbors by communication. In extensive robot swarm experiments with ten robots we validate our approach with dynamically changing swarm densities and under dynamic light conditions. We find an improved performance compared to robot swarms without communication and without awareness of the swarm density.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

ALIFE 2019 : The 2019 Conference on Artificial Life, 29. Juli 2019 - 2. Aug. 2019, Newcastle, United Kingdom
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WAHBY, Mostafa, Julian PETZOLD, Catriona ESCHKE, Thomas SCHMICKL, Heiko HAMANN, 2019. Collective Change Detection : Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot Swarms. ALIFE 2019 : The 2019 Conference on Artificial Life. Newcastle, United Kingdom, 29. Juli 2019 - 2. Aug. 2019. In: ALIFE 2019 : The 2019 Conference on Artificial Life. Cambridge, Massachusetts: MIT Press, 2019, pp. 642-649. Available under: doi: 10.1162/isal_a_00233
BibTex
@inproceedings{Wahby2019Colle-59753,
  year={2019},
  doi={10.1162/isal_a_00233},
  title={Collective Change Detection : Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot Swarms},
  publisher={MIT Press},
  address={Cambridge, Massachusetts},
  booktitle={ALIFE 2019 : The 2019 Conference on Artificial Life},
  pages={642--649},
  author={Wahby, Mostafa and Petzold, Julian and Eschke, Catriona and Schmickl, Thomas and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59753">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:58:01Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59753/1/Wahby_2-vi4ph23zvggy4.pdf"/>
    <dcterms:title>Collective Change Detection : Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot Swarms</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2019</dcterms:issued>
    <dc:creator>Petzold, Julian</dc:creator>
    <dc:creator>Wahby, Mostafa</dc:creator>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schmickl, Thomas</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Wahby, Mostafa</dc:contributor>
    <dc:contributor>Petzold, Julian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59753/1/Wahby_2-vi4ph23zvggy4.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59753"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:58:01Z</dcterms:available>
    <dc:creator>Eschke, Catriona</dc:creator>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:contributor>Eschke, Catriona</dc:contributor>
    <dcterms:abstract xml:lang="eng">Robot swarms are known to be robust to individual robot failures. However, a reduced swarm size causes a reduced swarm density. A too low swarm density may then decrease swarm performance, that should be compensated by adapting the individual behavior. Similarly, swarm behaviors can also be adapted to changes in the environment, such as dynamic light conditions. We study aggregation of swarm robots controlled by an extended variant of the BEECLUST algorithm. The robots are asked to aggregate at the brightest spot in their environment. Our approach efficiently adapts this swarm aggregation behavior to variability in swarm density and light conditions. First, each robot individually monitors its environment continuously by sampling its local swarm density and perceived light condition. Second, we exploit the collaboration of robots by letting them share features of these measurements with their neighbors by communication. In extensive robot swarm experiments with ten robots we validate our approach with dynamically changing swarm densities and under dynamic light conditions. We find an improved performance compared to robot swarms without communication and without awareness of the swarm density.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Schmickl, Thomas</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen