Collective Change Detection : Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot Swarms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Robot swarms are known to be robust to individual robot failures. However, a reduced swarm size causes a reduced swarm density. A too low swarm density may then decrease swarm performance, that should be compensated by adapting the individual behavior. Similarly, swarm behaviors can also be adapted to changes in the environment, such as dynamic light conditions. We study aggregation of swarm robots controlled by an extended variant of the BEECLUST algorithm. The robots are asked to aggregate at the brightest spot in their environment. Our approach efficiently adapts this swarm aggregation behavior to variability in swarm density and light conditions. First, each robot individually monitors its environment continuously by sampling its local swarm density and perceived light condition. Second, we exploit the collaboration of robots by letting them share features of these measurements with their neighbors by communication. In extensive robot swarm experiments with ten robots we validate our approach with dynamically changing swarm densities and under dynamic light conditions. We find an improved performance compared to robot swarms without communication and without awareness of the swarm density.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WAHBY, Mostafa, Julian PETZOLD, Catriona ESCHKE, Thomas SCHMICKL, Heiko HAMANN, 2019. Collective Change Detection : Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot Swarms. ALIFE 2019 : The 2019 Conference on Artificial Life. Newcastle, United Kingdom, 29. Juli 2019 - 2. Aug. 2019. In: ALIFE 2019 : The 2019 Conference on Artificial Life. Cambridge, Massachusetts: MIT Press, 2019, pp. 642-649. Available under: doi: 10.1162/isal_a_00233BibTex
@inproceedings{Wahby2019Colle-59753, year={2019}, doi={10.1162/isal_a_00233}, title={Collective Change Detection : Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot Swarms}, publisher={MIT Press}, address={Cambridge, Massachusetts}, booktitle={ALIFE 2019 : The 2019 Conference on Artificial Life}, pages={642--649}, author={Wahby, Mostafa and Petzold, Julian and Eschke, Catriona and Schmickl, Thomas and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59753"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:58:01Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59753/1/Wahby_2-vi4ph23zvggy4.pdf"/> <dcterms:title>Collective Change Detection : Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot Swarms</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2019</dcterms:issued> <dc:creator>Petzold, Julian</dc:creator> <dc:creator>Wahby, Mostafa</dc:creator> <dc:contributor>Hamann, Heiko</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schmickl, Thomas</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Wahby, Mostafa</dc:contributor> <dc:contributor>Petzold, Julian</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59753/1/Wahby_2-vi4ph23zvggy4.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59753"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:58:01Z</dcterms:available> <dc:creator>Eschke, Catriona</dc:creator> <dc:creator>Hamann, Heiko</dc:creator> <dc:contributor>Eschke, Catriona</dc:contributor> <dcterms:abstract xml:lang="eng">Robot swarms are known to be robust to individual robot failures. However, a reduced swarm size causes a reduced swarm density. A too low swarm density may then decrease swarm performance, that should be compensated by adapting the individual behavior. Similarly, swarm behaviors can also be adapted to changes in the environment, such as dynamic light conditions. We study aggregation of swarm robots controlled by an extended variant of the BEECLUST algorithm. The robots are asked to aggregate at the brightest spot in their environment. Our approach efficiently adapts this swarm aggregation behavior to variability in swarm density and light conditions. First, each robot individually monitors its environment continuously by sampling its local swarm density and perceived light condition. Second, we exploit the collaboration of robots by letting them share features of these measurements with their neighbors by communication. In extensive robot swarm experiments with ten robots we validate our approach with dynamically changing swarm densities and under dynamic light conditions. We find an improved performance compared to robot swarms without communication and without awareness of the swarm density.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Schmickl, Thomas</dc:contributor> </rdf:Description> </rdf:RDF>