Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 227-228. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042503
Zusammenfassung
The creation of similarity functions based on visual-interactive user feedback is a promising means to capture the mental similarity notion in the heads of domain experts. In particular, concepts exist where users arrange multivariate data objects on a 2D data landscape in order to learn new similarity functions. While systems that incorporate numerical data attributes have been presented in the past, the remaining overall goal may be to develop systems also for mixed data sets. In this work, we present a feedback model for categorical data which can be used alongside of numerical feedback models in future.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IEEE Conference on Visual Analytics Science and Technology (VAST), 2014, 9. Okt. 2014 - 14. Okt. 2014, Paris
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERNARD, Jürgen, David SESSLER, Michael BEHRISCH, Marco HUTTER, Tobias SCHRECK, Jorn KOHLHAMMER, 2014. Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data. IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt. 2014 - 14. Okt. 2014. In: MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 227-228. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042503BibTex
@inproceedings{Bernard2014Towar-30005, year={2014}, doi={10.1109/VAST.2014.7042503}, title={Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data}, isbn={978-1-4799-6227-3}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings}, pages={227--228}, editor={Min Chen ...}, author={Bernard, Jürgen and Sessler, David and Behrisch, Michael and Hutter, Marco and Schreck, Tobias and Kohlhammer, Jorn} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30005"> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Behrisch, Michael</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kohlhammer, Jorn</dc:contributor> <dc:creator>Bernard, Jürgen</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T14:32:33Z</dcterms:available> <dcterms:title>Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data</dcterms:title> <dcterms:abstract xml:lang="eng">The creation of similarity functions based on visual-interactive user feedback is a promising means to capture the mental similarity notion in the heads of domain experts. In particular, concepts exist where users arrange multivariate data objects on a 2D data landscape in order to learn new similarity functions. While systems that incorporate numerical data attributes have been presented in the past, the remaining overall goal may be to develop systems also for mixed data sets. In this work, we present a feedback model for categorical data which can be used alongside of numerical feedback models in future.</dcterms:abstract> <dc:creator>Sessler, David</dc:creator> <dc:creator>Hutter, Marco</dc:creator> <dc:contributor>Behrisch, Michael</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T14:32:33Z</dc:date> <dc:contributor>Sessler, David</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30005"/> <dc:contributor>Hutter, Marco</dc:contributor> <dc:creator>Kohlhammer, Jorn</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:issued>2014</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Bernard, Jürgen</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja