Publikation:

Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Bernard, Jürgen
Sessler, David
Hutter, Marco
Kohlhammer, Jorn

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 227-228. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042503

Zusammenfassung

The creation of similarity functions based on visual-interactive user feedback is a promising means to capture the mental similarity notion in the heads of domain experts. In particular, concepts exist where users arrange multivariate data objects on a 2D data landscape in order to learn new similarity functions. While systems that incorporate numerical data attributes have been presented in the past, the remaining overall goal may be to develop systems also for mixed data sets. In this work, we present a feedback model for categorical data which can be used alongside of numerical feedback models in future.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE Conference on Visual Analytics Science and Technology (VAST), 2014, 9. Okt. 2014 - 14. Okt. 2014, Paris
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690BERNARD, Jürgen, David SESSLER, Michael BEHRISCH, Marco HUTTER, Tobias SCHRECK, Jorn KOHLHAMMER, 2014. Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data. IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt. 2014 - 14. Okt. 2014. In: MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 227-228. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042503
BibTex
@inproceedings{Bernard2014Towar-30005,
  year={2014},
  doi={10.1109/VAST.2014.7042503},
  title={Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data},
  isbn={978-1-4799-6227-3},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings},
  pages={227--228},
  editor={Min Chen ...},
  author={Bernard, Jürgen and Sessler, David and Behrisch, Michael and Hutter, Marco and Schreck, Tobias and Kohlhammer, Jorn}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30005">
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Behrisch, Michael</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kohlhammer, Jorn</dc:contributor>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T14:32:33Z</dcterms:available>
    <dcterms:title>Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data</dcterms:title>
    <dcterms:abstract xml:lang="eng">The creation of similarity functions based on visual-interactive user feedback is a promising means to capture the mental similarity notion in the heads of domain experts. In particular, concepts exist where users arrange multivariate data objects on a 2D data landscape in order to learn new similarity functions. While systems that incorporate numerical data attributes have been presented in the past, the remaining overall goal may be to develop systems also for mixed data sets. In this work, we present a feedback model for categorical data which can be used alongside of numerical feedback models in future.</dcterms:abstract>
    <dc:creator>Sessler, David</dc:creator>
    <dc:creator>Hutter, Marco</dc:creator>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T14:32:33Z</dc:date>
    <dc:contributor>Sessler, David</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30005"/>
    <dc:contributor>Hutter, Marco</dc:contributor>
    <dc:creator>Kohlhammer, Jorn</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen