A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2024
Autor:innen
Sonntag, Konstantin
Gebken, Bennet
Peitz, Sebastian
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Optimization Theory and Applications. Springer. ISSN 0022-3239. eISSN 1573-2878. Verfügbar unter: doi: 10.1007/s10957-024-02520-4
Zusammenfassung

The efficient optimization method for locally Lipschitz continuous multiobjective optimization problems from Gebken and Peitz (J Optim Theory Appl 188:696–723, 2021) is extended from finite-dimensional problems to general Hilbert spaces. The method iteratively computes Pareto critical points, where in each iteration, an approximation of the Clarke subdifferential is computed in an efficient manner and then used to compute a common descent direction for all objective functions. To prove convergence, we present some new optimality results for nonsmooth multiobjective optimization problems in Hilbert spaces. Using these, we can show that every accumulation point of the sequence generated by our algorithm is Pareto critical under common assumptions. Computational efficiency for finding Pareto critical points is numerically demonstrated for multiobjective optimal control of an obstacle problem.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SONNTAG, Konstantin, Bennet GEBKEN, Georg MÜLLER, Sebastian PEITZ, Stefan VOLKWEIN, 2024. A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces. In: Journal of Optimization Theory and Applications. Springer. ISSN 0022-3239. eISSN 1573-2878. Verfügbar unter: doi: 10.1007/s10957-024-02520-4
BibTex
@article{Sonntag2024-09-12Desce-70815,
  year={2024},
  doi={10.1007/s10957-024-02520-4},
  title={A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces},
  issn={0022-3239},
  journal={Journal of Optimization Theory and Applications},
  author={Sonntag, Konstantin and Gebken, Bennet and Müller, Georg and Peitz, Sebastian and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70815">
    <dcterms:title>A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T07:06:26Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Müller, Georg</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dc:creator>Peitz, Sebastian</dc:creator>
    <dc:contributor>Sonntag, Konstantin</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70815"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Müller, Georg</dc:creator>
    <dc:creator>Gebken, Bennet</dc:creator>
    <dcterms:issued>2024-09-12</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Gebken, Bennet</dc:contributor>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:creator>Sonntag, Konstantin</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Peitz, Sebastian</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T07:06:26Z</dcterms:available>
    <dcterms:abstract>The efficient optimization method for locally Lipschitz continuous multiobjective optimization problems from Gebken and Peitz (J Optim Theory Appl 188:696–723, 2021) is extended from finite-dimensional problems to general Hilbert spaces. The method iteratively computes Pareto critical points, where in each iteration, an approximation of the Clarke subdifferential is computed in an efficient manner and then used to compute a common descent direction for all objective functions. To prove convergence, we present some new optimality results for nonsmooth multiobjective optimization problems in Hilbert spaces. Using these, we can show that every accumulation point of the sequence generated by our algorithm is Pareto critical under common assumptions. Computational efficiency for finding Pareto critical points is numerically demonstrated for multiobjective optimal control of an obstacle problem.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen