ParSetgnostics : Quality Metrics for Parallel Sets
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
While there are many visualization techniques for exploring numeric data, only a few work with categorical data. One prominent example is Parallel Sets, showing data frequencies instead of data points - analogous to parallel coordinates for numerical data. As nominal data does not have an intrinsic order, the design of Parallel Sets is sensitive to visual clutter due to overlaps, crossings, and subdivision of ribbons hindering readability and pattern detection. In this paper, we propose a set of quality metrics, called ParSetgnostics (Parallel Sets diagnostics), which aim to improve Parallel Sets by reducing clutter. These quality metrics quantify important properties of Parallel Sets such as overlap, orthogonality, ribbon width variance, and mutual information to optimize the category and dimension ordering. By conducting a systematic correlation analysis between the individual metrics, we ensure their distinctiveness. Further, we evaluate the clutter reduction effect of ParSetgnostics by reconstructing six datasets from previous publications using Parallel Sets measuring and comparing their respective properties. Our results show that ParSetgostics facilitates multi-dimensional analysis of categorical data by automatically providing optimized Parallel Set designs with a clutter reduction of up to 81% compared to the originally proposed Parallel Sets visualizations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENNIG, Frederik L., Maximilian T. FISCHER, Michael BLUMENSCHEIN, Johannes FUCHS, Daniel A. KEIM, Evanthia DIMARA, 2021. ParSetgnostics : Quality Metrics for Parallel Sets. In: Computer Graphics Forum. Wiley. 2021, 40(3), pp. 375-386. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14314BibTex
@article{Dennig2021ParSe-54162, year={2021}, doi={10.1111/cgf.14314}, title={ParSetgnostics : Quality Metrics for Parallel Sets}, number={3}, volume={40}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={375--386}, author={Dennig, Frederik L. and Fischer, Maximilian T. and Blumenschein, Michael and Fuchs, Johannes and Keim, Daniel A. and Dimara, Evanthia} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54162"> <dc:creator>Dimara, Evanthia</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-30T14:13:52Z</dcterms:available> <dc:creator>Dennig, Frederik L.</dc:creator> <dcterms:issued>2021</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54162/1/Dennig_2-w7sp7yrsqkad2.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Dennig, Frederik L.</dc:contributor> <dc:contributor>Fischer, Maximilian T.</dc:contributor> <dc:contributor>Fuchs, Johannes</dc:contributor> <dc:contributor>Dimara, Evanthia</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-30T14:13:52Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54162"/> <dc:creator>Fischer, Maximilian T.</dc:creator> <dc:contributor>Blumenschein, Michael</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Blumenschein, Michael</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54162/1/Dennig_2-w7sp7yrsqkad2.pdf"/> <dcterms:abstract xml:lang="eng">While there are many visualization techniques for exploring numeric data, only a few work with categorical data. One prominent example is Parallel Sets, showing data frequencies instead of data points - analogous to parallel coordinates for numerical data. As nominal data does not have an intrinsic order, the design of Parallel Sets is sensitive to visual clutter due to overlaps, crossings, and subdivision of ribbons hindering readability and pattern detection. In this paper, we propose a set of quality metrics, called ParSetgnostics (Parallel Sets diagnostics), which aim to improve Parallel Sets by reducing clutter. These quality metrics quantify important properties of Parallel Sets such as overlap, orthogonality, ribbon width variance, and mutual information to optimize the category and dimension ordering. By conducting a systematic correlation analysis between the individual metrics, we ensure their distinctiveness. Further, we evaluate the clutter reduction effect of ParSetgnostics by reconstructing six datasets from previous publications using Parallel Sets measuring and comparing their respective properties. Our results show that ParSetgostics facilitates multi-dimensional analysis of categorical data by automatically providing optimized Parallel Set designs with a clutter reduction of up to 81% compared to the originally proposed Parallel Sets visualizations.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Fuchs, Johannes</dc:creator> <dcterms:title>ParSetgnostics : Quality Metrics for Parallel Sets</dcterms:title> </rdf:Description> </rdf:RDF>