Semiautomatic benchmarking of feature vectors for multimedia retrieval

Lade...
Vorschaubild
Dateien
DELOS07.pdf
DELOS07.pdfGröße: 1.08 MBDownloads: 90
Datum
2007
Autor:innen
Schneidewind, Jörn
Ward, Matthew O.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa. 2007
Zusammenfassung

Modern Digital Library applications store and process massive amounts of information. Usually, this data is not limited to raw textual or numeric data - typical applications also deal with multimedia data such as images, audio, video, or 3D geometric models. For providing effective retrieval functionality, appropriate meta data descriptors that allow calculation of similarity scores between data instances are requires. Feature vectors are a generic way for describing multimedia data by vectors formed from numerically captured object features. They are used in similarity search, but also, can be used for clustering and wider multimedia analysis applications. Extracting effective feature vectors for a given data type is a challenging task. Determining good feature vector extractors usually involves experimentation and application of supervised information. However, such experimentation usually is expensive, and supervised information often is data dependent. We address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Visual Analytics, Feature Vectors, Automatic Feature Selection, Self-Organizing Maps
Konferenz
Second Delos, 5. Dez. 2007 - 7. Dez. 2007, Tirrenia, Pisa
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHRECK, Tobias, Jörn SCHNEIDEWIND, Daniel A. KEIM, Matthew O. WARD, Andrada TATU, 2007. Semiautomatic benchmarking of feature vectors for multimedia retrieval. Second Delos. Tirrenia, Pisa, 5. Dez. 2007 - 7. Dez. 2007. In: Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa. 2007
BibTex
@inproceedings{Schreck2007Semia-5568,
  year={2007},
  title={Semiautomatic benchmarking of feature vectors for multimedia retrieval},
  booktitle={Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa},
  author={Schreck, Tobias and Schneidewind, Jörn and Keim, Daniel A. and Ward, Matthew O. and Tatu, Andrada}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5568">
    <dcterms:issued>2007</dcterms:issued>
    <dc:creator>Tatu, Andrada</dc:creator>
    <dcterms:title>Semiautomatic benchmarking of feature vectors for multimedia retrieval</dcterms:title>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:29Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5568"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>First publ. in: Second Delos Conference On Digital Libraries 5-7 December 2007, Tirrenia, Pisa</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5568/1/DELOS07.pdf"/>
    <dc:contributor>Tatu, Andrada</dc:contributor>
    <dcterms:abstract xml:lang="eng">Modern Digital Library applications store and process massive amounts of information. Usually, this data is not limited to raw textual or numeric data - typical applications also deal with multimedia data such as images, audio, video, or 3D geometric models. For providing effective retrieval functionality, appropriate meta data descriptors that allow calculation of similarity scores between data instances are requires. Feature vectors are a generic way for describing multimedia data by vectors formed from numerically captured object features. They are used in similarity search, but also, can be used for clustering and wider multimedia analysis applications. Extracting effective feature vectors for a given data type is a challenging task. Determining good feature vector extractors usually involves experimentation and application of supervised information. However, such experimentation usually is expensive, and supervised information often is data dependent. We address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5568/1/DELOS07.pdf"/>
    <dc:creator>Ward, Matthew O.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:29Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:contributor>Ward, Matthew O.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen