Publikation:

Semiautomatic benchmarking of feature vectors for multimedia retrieval

Lade...
Vorschaubild

Dateien

DELOS07.pdf
DELOS07.pdfGröße: 1.08 MBDownloads: 107

Datum

2007

Autor:innen

Schneidewind, Jörn
Ward, Matthew O.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa. 2007

Zusammenfassung

Modern Digital Library applications store and process massive amounts of information. Usually, this data is not limited to raw textual or numeric data - typical applications also deal with multimedia data such as images, audio, video, or 3D geometric models. For providing effective retrieval functionality, appropriate meta data descriptors that allow calculation of similarity scores between data instances are requires. Feature vectors are a generic way for describing multimedia data by vectors formed from numerically captured object features. They are used in similarity search, but also, can be used for clustering and wider multimedia analysis applications. Extracting effective feature vectors for a given data type is a challenging task. Determining good feature vector extractors usually involves experimentation and application of supervised information. However, such experimentation usually is expensive, and supervised information often is data dependent. We address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual Analytics, Feature Vectors, Automatic Feature Selection, Self-Organizing Maps

Konferenz

Second Delos, 5. Dez. 2007 - 7. Dez. 2007, Tirrenia, Pisa
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHRECK, Tobias, Jörn SCHNEIDEWIND, Daniel A. KEIM, Matthew O. WARD, Andrada TATU, 2007. Semiautomatic benchmarking of feature vectors for multimedia retrieval. Second Delos. Tirrenia, Pisa, 5. Dez. 2007 - 7. Dez. 2007. In: Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa. 2007
BibTex
@inproceedings{Schreck2007Semia-5568,
  year={2007},
  title={Semiautomatic benchmarking of feature vectors for multimedia retrieval},
  booktitle={Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa},
  author={Schreck, Tobias and Schneidewind, Jörn and Keim, Daniel A. and Ward, Matthew O. and Tatu, Andrada}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5568">
    <dcterms:issued>2007</dcterms:issued>
    <dc:creator>Tatu, Andrada</dc:creator>
    <dcterms:title>Semiautomatic benchmarking of feature vectors for multimedia retrieval</dcterms:title>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:29Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5568"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>First publ. in: Second Delos Conference On Digital Libraries 5-7 December 2007, Tirrenia, Pisa</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5568/1/DELOS07.pdf"/>
    <dc:contributor>Tatu, Andrada</dc:contributor>
    <dcterms:abstract xml:lang="eng">Modern Digital Library applications store and process massive amounts of information. Usually, this data is not limited to raw textual or numeric data - typical applications also deal with multimedia data such as images, audio, video, or 3D geometric models. For providing effective retrieval functionality, appropriate meta data descriptors that allow calculation of similarity scores between data instances are requires. Feature vectors are a generic way for describing multimedia data by vectors formed from numerically captured object features. They are used in similarity search, but also, can be used for clustering and wider multimedia analysis applications. Extracting effective feature vectors for a given data type is a challenging task. Determining good feature vector extractors usually involves experimentation and application of supervised information. However, such experimentation usually is expensive, and supervised information often is data dependent. We address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5568/1/DELOS07.pdf"/>
    <dc:creator>Ward, Matthew O.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:29Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:contributor>Ward, Matthew O.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen