Semiautomatic benchmarking of feature vectors for multimedia retrieval
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Modern Digital Library applications store and process massive amounts of information. Usually, this data is not limited to raw textual or numeric data - typical applications also deal with multimedia data such as images, audio, video, or 3D geometric models. For providing effective retrieval functionality, appropriate meta data descriptors that allow calculation of similarity scores between data instances are requires. Feature vectors are a generic way for describing multimedia data by vectors formed from numerically captured object features. They are used in similarity search, but also, can be used for clustering and wider multimedia analysis applications. Extracting effective feature vectors for a given data type is a challenging task. Determining good feature vector extractors usually involves experimentation and application of supervised information. However, such experimentation usually is expensive, and supervised information often is data dependent. We address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHRECK, Tobias, Jörn SCHNEIDEWIND, Daniel A. KEIM, Matthew O. WARD, Andrada TATU, 2007. Semiautomatic benchmarking of feature vectors for multimedia retrieval. Second Delos. Tirrenia, Pisa, 5. Dez. 2007 - 7. Dez. 2007. In: Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa. 2007BibTex
@inproceedings{Schreck2007Semia-5568, year={2007}, title={Semiautomatic benchmarking of feature vectors for multimedia retrieval}, booktitle={Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa}, author={Schreck, Tobias and Schneidewind, Jörn and Keim, Daniel A. and Ward, Matthew O. and Tatu, Andrada} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5568"> <dcterms:issued>2007</dcterms:issued> <dc:creator>Tatu, Andrada</dc:creator> <dcterms:title>Semiautomatic benchmarking of feature vectors for multimedia retrieval</dcterms:title> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:29Z</dc:date> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:creator>Schneidewind, Jörn</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:format>application/pdf</dc:format> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5568"/> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>First publ. in: Second Delos Conference On Digital Libraries 5-7 December 2007, Tirrenia, Pisa</dcterms:bibliographicCitation> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5568/1/DELOS07.pdf"/> <dc:contributor>Tatu, Andrada</dc:contributor> <dcterms:abstract xml:lang="eng">Modern Digital Library applications store and process massive amounts of information. Usually, this data is not limited to raw textual or numeric data - typical applications also deal with multimedia data such as images, audio, video, or 3D geometric models. For providing effective retrieval functionality, appropriate meta data descriptors that allow calculation of similarity scores between data instances are requires. Feature vectors are a generic way for describing multimedia data by vectors formed from numerically captured object features. They are used in similarity search, but also, can be used for clustering and wider multimedia analysis applications. Extracting effective feature vectors for a given data type is a challenging task. Determining good feature vector extractors usually involves experimentation and application of supervised information. However, such experimentation usually is expensive, and supervised information often is data dependent. We address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5568/1/DELOS07.pdf"/> <dc:creator>Ward, Matthew O.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:29Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:contributor>Ward, Matthew O.</dc:contributor> </rdf:Description> </rdf:RDF>