Exploring geo-tagged photos to assess spatial patterns of visitors in protected areas : the case of park of Etna (Italy)
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we use the georeferenced images publicly available on Flickr platform as a source of information to monitor visitors in nature areas. In particular, we propose and evaluate a method composed by three main steps to perform the analysis of social images related to natural park of Mount Etna. At first metadata of the georeferenced images are explored to identify trends, patterns and relationships among the information acquired. Then data mining techniques are used to generate a traveling model. Association rules that highlight locations visited jointly are identified using the Apriori data mining technique. Finally, we consider places that are likely to be jointly visited and analyze the tourist flow from one to another.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SIGNORELLO, Giovanni, Giovanni Maria FARINELLA, Lorenzo DI SILVESTRO, Alessandro TORRISI, Giovanni GALLO, 2018. Exploring geo-tagged photos to assess spatial patterns of visitors in protected areas : the case of park of Etna (Italy). VGI Geovisual Analytics Workshop, colocated with BDVA 2018. Konstanz, Germany, 19. Okt. 2018. In: BURGHARDT, Dirk, ed., Siming CHEN, ed., Gennady ANDRIENKO, ed., Natalia ANDRIENKO, ed., Ross PURVES, ed., Alexandra DIEHL, ed.. VGI Geovisual Analytics Workshop. 2018BibTex
@inproceedings{Signorello2018Explo-43922, year={2018}, title={Exploring geo-tagged photos to assess spatial patterns of visitors in protected areas : the case of park of Etna (Italy)}, url={http://bdva.net/2018/index.php/vgi-geovisual-analytics-workshop/}, booktitle={VGI Geovisual Analytics Workshop}, editor={Burghardt, Dirk and Chen, Siming and Andrienko, Gennady and Andrienko, Natalia and Purves, Ross and Diehl, Alexandra}, author={Signorello, Giovanni and Farinella, Giovanni Maria and Di Silvestro, Lorenzo and Torrisi, Alessandro and Gallo, Giovanni} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43922"> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-20T11:55:33Z</dc:date> <dcterms:issued>2018</dcterms:issued> <dc:contributor>Di Silvestro, Lorenzo</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43922"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43922/3/Signorello_2-wl1uzthmoikk1.pdf"/> <dc:language>eng</dc:language> <dc:creator>Di Silvestro, Lorenzo</dc:creator> <dc:contributor>Farinella, Giovanni Maria</dc:contributor> <dcterms:abstract xml:lang="eng">In this paper we use the georeferenced images publicly available on Flickr platform as a source of information to monitor visitors in nature areas. In particular, we propose and evaluate a method composed by three main steps to perform the analysis of social images related to natural park of Mount Etna. At first metadata of the georeferenced images are explored to identify trends, patterns and relationships among the information acquired. Then data mining techniques are used to generate a traveling model. Association rules that highlight locations visited jointly are identified using the Apriori data mining technique. Finally, we consider places that are likely to be jointly visited and analyze the tourist flow from one to another.</dcterms:abstract> <dc:creator>Torrisi, Alessandro</dc:creator> <dc:contributor>Signorello, Giovanni</dc:contributor> <dc:creator>Gallo, Giovanni</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gallo, Giovanni</dc:contributor> <dc:creator>Signorello, Giovanni</dc:creator> <dc:contributor>Torrisi, Alessandro</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Exploring geo-tagged photos to assess spatial patterns of visitors in protected areas : the case of park of Etna (Italy)</dcterms:title> <dc:creator>Farinella, Giovanni Maria</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-20T11:55:33Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43922/3/Signorello_2-wl1uzthmoikk1.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>